-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathload_pytorch_lpc_estimator.py
75 lines (59 loc) · 2.35 KB
/
load_pytorch_lpc_estimator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
import torch
import numpy as np
import csv
import sys
import os
# Define the PyTorch model
class Net(torch.nn.Module):
def __init__(self):
super(Net, self).__init__()
self.Dense1 = torch.nn.Linear(350, 1024)
self.Dense2 = torch.nn.Linear(1024, 512)
self.Dense3 = torch.nn.Linear(512, 256)
self.out = torch.nn.Linear(256, 4)
def forward(self, x):
x = torch.sigmoid(self.Dense1(x))
x = torch.sigmoid(self.Dense2(x))
x = torch.sigmoid(self.Dense3(x))
return self.out(x)
# Load the model
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = Net().to(device)
model_path = "pytorchFormants/Estimator/LPC_NN_scaledLoss.pt"
if not os.path.exists(model_path):
raise FileNotFoundError(f"Model file not found at {model_path}")
model.load_state_dict(torch.load(model_path, map_location=device))
model.eval()
# Main prediction logic
def predict_from_features(features_file, preds_file):
if not os.path.exists(features_file):
raise FileNotFoundError(f"Features file not found at {features_file}")
with open(features_file, 'r') as f, open(preds_file, 'w', newline='') as out_f:
reader = csv.reader(f)
writer = csv.writer(out_f)
# Write header
writer.writerow(['NAME', 'F1', 'F2', 'F3', 'F4'])
for row in reader:
if not row or len(row) < 351: # Check for valid row
print(f"Skipping invalid row: {row}")
continue
# Extract the name and features
name = row[0]
features = np.array(row[1:], dtype=np.float32).reshape(1, -1)
# Convert features to a PyTorch tensor
features_tensor = torch.from_numpy(features).to(device)
# Perform prediction
with torch.no_grad():
prediction = model(features_tensor).cpu().numpy()
# Scale predictions by 1000
scaled_prediction = 1000 * prediction[0]
# Write results to the output file
writer.writerow([name] + scaled_prediction.tolist())
# Entry point
if __name__ == "__main__":
if len(sys.argv) != 3:
print("Usage: python model_predict.py <features_file> <predictions_file>")
sys.exit(1)
features_file = sys.argv[1]
preds_file = sys.argv[2]
predict_from_features(features_file, preds_file)