-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathXRD2.py
255 lines (213 loc) · 9.34 KB
/
XRD2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
import numpy as np
import matplotlib.pyplot as plt
# 输入参数测试
# [[Atomic Coordinate], Atomic Number/Element]
StrucInform = [[[0,0,0],17],[[0.5,0.5,0],17],[[0,0.5,0.5],17],[[0.5,0,0.5],17],
[[0.5, 0.5, 0.5],11],[[0,0,0.5],11],[[0,0.5,0],11],[[0.5,0,0],11]]
#StrucInform = [[[0,0,0],28], [[0.5,0.5,0],28], [[0.5,0,0.5],28], [[0,0.5,0.5],28]]
#LP = [3.5288,3.5288,3.5288,90,90,90,'Cubic']
LP = [5.6071,5.6071,5.6071,90,90,90,'Cubic']
# 0-AtomName, 1-AtomicNumber, 2-a1, 3-b1, 4-a2, 5-b2, 6-a3, 7-b3, 8-a4, 9-b4
AtomicScatteringInformation = [['Ac', 98, 6.278, 28.323, 5.195, 4.949, 2.321, 0.557, 0, 0],
['Ag', 47, 2.036, 61.497, 3.272, 11.824, 2.511, 2.846, 0.837, 0.327],
['Na', 11, 2.241, 108.004, 1.333, 24.505, 0.907, 3.391, 0.286, 0.435],
['Cl', 17, 1.452, 30.935, 2.292, 9.980, 0.787, 2.234, 0.322, 0.323],
['W', 74, 5.709, 28.782, 4.677, 5.084, 2.019, 0.572, 0, 0],
['Ni',28, 2.210, 58.727, 2.134, 13,553, 1.689, 2.609, 0.524, 0.339]]
# 波形拟合函数组
def KroneckerDelta(i,j):
y = 0
for n in range(len(j)):
if i == j[n]:
y = 1
return y
def DiracDelta(i,j,a=0.00001):
return np.exp(-(i-j)**2/a**2)/(a*np.sqrt(np.pi))
# 峰位计算函数组
def ReciprocalMetricTensor(a,b,c,alpha,beta,gamma,CrystalSystem='Unknown'):
if CrystalSystem == 'Unknown':
a_star = a
b_star = b
c_star = c
alpha_star = alpha
beta_star = beta
gamma_star = gamma
g_star = np.array([[a_star**2, a_star*b_star*np.cos(gamma_star), a_star*c_star*np.cos(beta_star)],
[b_star*a_star*np.cos(gamma_star), b_star**2, b_star*c_star*np.cos(alpha_star)],
[c_star*a_star*np.cos(beta_star), c_star*b_star*np.cos(alpha_star), c_star**2]])
elif CrystalSystem == 'Cubic':
g_star = np.array([[1/a**2, 0, 0],
[0, 1/a**2, 0],
[0, 0, 1/a**2]])
elif CrystalSystem == 'Orthorhombic':
g_star = np.array([[1/a**2, 0, 0],
[0, 1/b**2, 0],
[0, 0, 1/c**2]])
return g_star
def CrystalPlaneFamily(h_max,k_max,l_max):
hkl = []
for h in range(h_max+1):
for k in range(k_max+1):
for l in range(l_max+1):
if [h,k,l] != [0,0,0]:
hkl.append([h,k,l])
return hkl
def PlaneToAngle(CrystalPlane,Wavelength,LatticeParameters): # Converting a set of Crystal Plane Families with Miller Index to a set of angles(theta).
a, b, c, alpha, beta, gamma, CrystalSystem = LatticeParameters
g_star = ReciprocalMetricTensor(a,b,c,alpha,beta,gamma, CrystalSystem)
hkl_list = []
dhkl_list = []
OutOfRange_list = []
Theta_list = []
for i in range(len(CrystalPlane)):
hkl = np.array(CrystalPlane[i])
dhkl = 1/np.sqrt(np.sum(hkl*g_star*np.transpose(hkl)))
if Wavelength/(2*dhkl) <= 1:
Theta = np.arcsin(Wavelength/(2*dhkl))*180/np.pi
Theta_list.append(Theta)
hkl_list.append(hkl)
dhkl_list.append(dhkl)
else:
OutOfRange_list.append(hkl)
if OutOfRange_list == []:
print('All the Crystal Plane Families are inside the test range.')
else:
print('The below Crystal Plane Families are out of range:')
print(OutOfRange_list)
return Theta_list,hkl_list,dhkl_list
def AtomicScatteringFactor(Theta,Wavelength,Z,T=0,AtomicScatteringParameters=AtomicScatteringInformation):
s = np.sin(Theta)/Wavelength
a = np.zeros((4),dtype=float)
b = np.zeros((4),dtype=float)
sum = 0
for i in range(len(AtomicScatteringParameters)):
if Z == AtomicScatteringParameters[i][1]:
for n in range(4):
a[n] = AtomicScatteringParameters[i][2*n+2]
b[n] = AtomicScatteringParameters[i][2*n+3]
sum += a[n]*np.exp(-b[n]*s**2)
# Debye-Waller Temperature Factor
#TemFac =
f = Z-42.78214*s**2*sum
return f
def StructureFactor(AtomicPosition, AtomScatFac, CrystalPlane):
FF_star_list = []
for n in range(len(CrystalPlane)):
g = np.array(CrystalPlane[n])
ASF = [AtomScatFac[m][n] for m in range(len(AtomScatFac))] # ASF - Atomic Scattering Factor
FF_star = 0
for i in range(len(AtomicPosition)):
for j in range(len(AtomicPosition)):
ra = np.array(AtomicPosition[i]) # Atomic Position Vector
rb = np.array(AtomicPosition[j])
fa = ASF[i] # Atomic Scattering Factor
fb = ASF[j]
FF_star += fa * fb * np.exp(2 * np.pi * (0.0 + 1j) * np.sum(g * (ra - rb)))
FF_star_list.append(FF_star.real)
return FF_star_list
# 主函数
def Test():
wavelength = 1.789
Theta_list = []
dhkl_list = []
hkl = CrystalPlaneFamily(5,5,5)
hkl_list = []
# FF_star = StructureFactor(StructureInformation,hkl)
for i in range(len(hkl)):
dhkl = 1/np.sqrt(np.sum(np.array(hkl[i])*ReciprocalMetricTensor(5.6071,5.6071,5.6071,90,90,90,'Cubic')*np.transpose(np.array(hkl[i])))) # 需改进!!!
dhkl_list.append(dhkl)
Theta = np.arcsin(wavelength/(2*dhkl))
Theta_list.append(Theta*180/np.pi)
hkl_list.append(hkl[i])
return dhkl_list,Theta_list,hkl_list
def main(StructureInformation,LaParam,TestRange):
wavelength = 1.789
hmax, kmax, lmax = TestRange
hkl_old = CrystalPlaneFamily(hmax,kmax,lmax)
theta, hkl_new, dhkl = PlaneToAngle(hkl_old,wavelength,LaParam)
# double_theta = [theta[n]*2 for n in range(len(theta))]
AtomPos = [StructureInformation[n][0] for n in range(len(StructureInformation))] # Atomic Position list
AtomNum = [StructureInformation[n][1] for n in range(len(StructureInformation))] # Atomic Number list
AtomScatFac = [AtomicScatteringFactor(theta,wavelength,AtomNum[n]) for n in range(len(AtomNum))] # Atomic Scattering Factor list
StrucFac = StructureFactor(AtomPos,AtomScatFac,hkl_new)
theta_list = []
# double_theta_list = []
hkl_list = []
dhkl_list = []
StrucFac_new = []
for i in range(len(StrucFac)):
if StrucFac[i] != 0:
if StrucFac[i] not in StrucFac_new:
StrucFac_new.append((StrucFac[i]))
theta_list.append(theta[i])
# double_theta_list.append((double_theta[i]))
hkl_list.append((hkl_new[i]))
dhkl_list.append(dhkl[i])
else:
a = StrucFac_new.index(StrucFac[i])
if not isinstance(hkl_list[a],list):
hkl_list[a] = [hkl_list[a]]
hkl_list[a].append(hkl_new[i])
theta_rearrange = sorted(theta_list)
index_list = [theta_list.index(theta_rearrange[n]) for n in range(len(theta_rearrange))]
hkl_rearrange = [hkl_list[index_list[n]] for n in range(len(index_list))]
StrucFac_rearrange = [StrucFac_new[index_list[n]] for n in range(len(index_list))]
dhkl_rearrange = [dhkl_list[index_list[n]] for n in range(len(index_list))]
double_theta_list = [2*theta_rearrange[n] for n in range(len(theta_rearrange))]
#print(StrucFac_new)
#print(theta_list)
#print(double_theta_list)
#print(hkl_list)
#print(theta_rearrange)
#print(hkl_rearrange)
return theta_rearrange,double_theta_list,StrucFac_rearrange,hkl_rearrange,dhkl_rearrange
# 可视化模块
def XRD(StartingPoint,StoppingPoint,step,double_theta,intensity):
n = len(double_theta)
x0 = np.linspace(0,double_theta[0],int(double_theta[0]/step),endpoint=False)
for i in range(n-1):
x0 = np.hstack((x0,np.linspace(double_theta[i],double_theta[i+1],int((double_theta[i+1]-double_theta[i])/step),endpoint=False)))
x0 = np.hstack((x0,np.linspace(double_theta[n-1],360,int((360-double_theta[n-1])/step),endpoint=False)))
x = []
for i in range(len(x0)):
if x0[i] >= StartingPoint and x0[i] <= StoppingPoint:
x.append(x0[i])
#y = []
#for i in range(len(x)):
#k1,k2 = KroneckerDelta(x[i],double_theta)
#y.append(k1*intensity(double_theta.index(k2)))
y =[]
for i in range(len(x)):
y0 = 0
I = 0
for j in range(len(double_theta)):
if x[i] == double_theta[j]:
y0 = 1
I = intensity[j]
y.append(y0*I)
print(x)
print(y)
return x,y
#x = np.hstack((np.linspace(-10,0,1000),np.linspace(0.00001,10,1000)))
#plt.plot(x,KroneckerDelta(x,0),color='k')
#plt.plot(x,DiracDelta(x,0),color='y')
#plt.show()
#print(Test()[0])
#print(Test()[1])
#print(Test()[2])
#print(Test()[3])
#print(np.arcsin(0.7)*180/np.pi)
#print(np.sqrt(np.sum(np.array([1,0,0])*ReciprocalMetricTensor(5,5,5,90,90,90,'Cubic')*np.transpose(np.array([1,0,0])))))
#print(np.sqrt(np.sum(np.transpose(np.array([1,0,0]))*ReciprocalMetricTensor(5,5,5,90,90,90,'Cubic')*np.array([1,0,0]))))
#print(f(20,1.789,11))
#print(f(x,1.780,11))
#print([StrucInform[n][0] for n in range(len(StrucInform))])
a = main(StrucInform,LP,[5,5,5])
xn,yn = XRD(20,90,0.05,a[1],a[2])
plt.plot(xn,yn)
# plt.ylim(-10,2000)
for i in range(len(a[1])):
if isinstance(a[3][i],list):
plt.text(a[1][i]-3,a[2][i]+200,str(a[3][i][1]))
else:
plt.text(a[1][i]-3, a[2][i] + 200, str(a[3][i]))