-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathDistinct Powers.py
56 lines (36 loc) · 1.26 KB
/
Distinct Powers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
'''
Problem 29
Consider all integer combinations of ab for 2 ≤ a ≤ 5 and 2 ≤ b ≤ 5:
2^2=4, 2^3=8, 2^4=16, 2^5=32
3^2=9, 3^3=27, 3^4=81, 3^5=243
4^2=16, 4^3=64, 4^4=256, 4^5=1024
5^2=25, 5^3=125, 5^4=625, 5^5=3125
If they are then placed in numerical order, with any repeats removed, we get the following sequence of 15 distinct terms:
4, 8, 9, 16, 25, 27, 32, 64, 81, 125, 243, 256, 625, 1024, 3125
How many distinct terms are in the sequence generated by a^b for 2 ≤ a ≤ 100 and 2 ≤ b ≤ 100?
'''
def getEvenBase():
evenBasePowers = []
for exponent in range(2, 101):
evenBasePowers.append(2**exponent)
return evenBasePowers
def getOddBase():
oddBasePowers = []
for exponent in range(2, 101):
oddBasePowers.append(3**exponent)
return oddBasePowers
def main():
evenBase = getEvenBase()
oddBase = getOddBase()
for number in range(4, 101):
for exponent in range(2, 101):
power = number**exponent
if number % 2 == 0:
if power not in evenBase:
evenBase.append(power)
else:
if power not in oddBase:
oddBase.append(power)
print(len(evenBase + oddBase))
if __name__ == '__main__':
main()