-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathKITTI_visualize_frustum_data.py
369 lines (333 loc) · 14.6 KB
/
KITTI_visualize_frustum_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
__author__ = "konwar.m"
__copyright__ = "Copyright 2022, AI R&D"
__credits__ = ["konwar.m"]
__license__ = "Individual Ownership"
__reference__ = "https://github.com/charlesq34/frustum-pointnets/blob/master/train/provider.py"
__version__ = "1.0.1"
__maintainer__ = "konwar.m"
__email__ = "rickykonwar@gmail.com"
__status__ = "Development"
import os
import pickle
import numpy as np
from utility.KITTI.viz_util import draw_lidar, draw_gt_boxes3d
from utility.KITTI.model_util import g_type2class, g_class2type, g_type2onehotclass, g_type_mean_size
from utility.KITTI.model_util import NUM_HEADING_BIN, NUM_SIZE_CLUSTER
def rotate_pc_along_y(pc, rot_angle):
'''
Input:
pc: numpy array (N,C), first 3 channels are XYZ
z is facing forward, x is left ward, y is downward
rot_angle: rad scalar
Output:
pc: updated pc with XYZ rotated
'''
cosval = np.cos(rot_angle)
sinval = np.sin(rot_angle)
rotmat = np.array([[cosval, -sinval],[sinval, cosval]])
pc[:,[0,2]] = np.dot(pc[:,[0,2]], np.transpose(rotmat))
return pc
def size2class(size, type_name):
''' Convert 3D bounding box size to template class and residuals.
todo (rqi): support multiple size clusters per type.
Input:
size: numpy array of shape (3,) for (l,w,h)
type_name: string
Output:
size_class: int scalar
size_residual: numpy array of shape (3,)
'''
size_class = g_type2class[type_name]
size_residual = size - g_type_mean_size[type_name]
return size_class, size_residual
def class2size(pred_cls, residual):
''' Inverse function to size2class. '''
mean_size = g_type_mean_size[g_class2type[pred_cls]]
return mean_size + residual
def angle2class(angle, num_class):
''' Convert continuous angle to discrete class and residual.
Input:
angle: rad scalar, from 0-2pi (or -pi~pi), class center at
0, 1*(2pi/N), 2*(2pi/N) ... (N-1)*(2pi/N)
num_class: int scalar, number of classes N
Output:
class_id, int, among 0,1,...,N-1
residual_angle: float, a number such that
class*(2pi/N) + residual_angle = angle
'''
angle = angle%(2*np.pi)
assert(angle>=0 and angle<=2*np.pi)
angle_per_class = 2*np.pi/float(num_class)
shifted_angle = (angle+angle_per_class/2)%(2*np.pi)
class_id = int(shifted_angle/angle_per_class)
residual_angle = shifted_angle - \
(class_id * angle_per_class + angle_per_class/2)
return class_id, residual_angle
def class2angle(pred_cls, residual, num_class, to_label_format=True):
''' Inverse function to angle2class.
If to_label_format, adjust angle to the range as in labels.
'''
angle_per_class = 2*np.pi/float(num_class)
angle_center = pred_cls * angle_per_class
angle = angle_center + residual
if to_label_format and angle>np.pi:
angle = angle - 2*np.pi
return angle
class FrustumDataset(object):
''' Dataset class for Frustum PointNets training/evaluation.
Load prepared KITTI data from pickled files, return individual data element
[optional] along with its annotations.
'''
def __init__(self, npoints, split,
random_flip=False, random_shift=False, rotate_to_center=False,
overwritten_data_path=None, from_rgb_detection=False, one_hot=False):
'''
Input:
npoints: int scalar, number of points for frustum point cloud.
split: string, train or val
random_flip: bool, in 50% randomly flip the point cloud
in left and right (after the frustum rotation if any)
random_shift: bool, if True randomly shift the point cloud
back and forth by a random distance
rotate_to_center: bool, whether to do frustum rotation
overwritten_data_path: string, specify pickled file path.
if None, use default path (with the split)
from_rgb_detection: bool, if True we assume we do not have
groundtruth, just return data elements.
one_hot: bool, if True, return one hot vector
'''
self.npoints = npoints
self.random_flip = random_flip
self.random_shift = random_shift
self.rotate_to_center = rotate_to_center
self.one_hot = one_hot
if overwritten_data_path is None:
overwritten_data_path = os.path.join(r'datasets\KITTI',
'frustum_carpedcyc_%s.pickle'%(split))
self.from_rgb_detection = from_rgb_detection
if from_rgb_detection:
with open(overwritten_data_path,'rb') as fp:
self.id_list = pickle.load(fp)
self.box2d_list = pickle.load(fp)
self.input_list = pickle.load(fp)
self.type_list = pickle.load(fp)
# frustum_angle is clockwise angle from positive x-axis
self.frustum_angle_list = pickle.load(fp)
self.prob_list = pickle.load(fp)
else:
with open(overwritten_data_path,'rb') as fp:
self.id_list = pickle.load(fp)
self.box2d_list = pickle.load(fp)
self.box3d_list = pickle.load(fp)
self.input_list = pickle.load(fp)
self.label_list = pickle.load(fp)
self.type_list = pickle.load(fp)
self.heading_list = pickle.load(fp)
self.size_list = pickle.load(fp)
# frustum_angle is clockwise angle from positive x-axis
self.frustum_angle_list = pickle.load(fp)
def __len__(self):
return len(self.input_list)
def __getitem__(self, index):
''' Get index-th element from the picked file dataset. '''
# ------------------------------ INPUTS ----------------------------
rot_angle = self.get_center_view_rot_angle(index)
# Compute one hot vector
if self.one_hot:
cls_type = self.type_list[index]
assert(cls_type in ['Car', 'Pedestrian', 'Cyclist'])
one_hot_vec = np.zeros((3))
one_hot_vec[g_type2onehotclass[cls_type]] = 1
# Get point cloud
if self.rotate_to_center:
point_set = self.get_center_view_point_set(index)
else:
point_set = self.input_list[index]
# Resample
choice = np.random.choice(point_set.shape[0], self.npoints, replace=True)
point_set = point_set[choice, :]
if self.from_rgb_detection:
if self.one_hot:
return point_set, rot_angle, self.prob_list[index], one_hot_vec
else:
return point_set, rot_angle, self.prob_list[index]
# ------------------------------ LABELS ----------------------------
seg = self.label_list[index]
seg = seg[choice]
# Get center point of 3D box
if self.rotate_to_center:
box3d_center = self.get_center_view_box3d_center(index)
else:
box3d_center = self.get_box3d_center(index)
# Heading
if self.rotate_to_center:
heading_angle = self.heading_list[index] - rot_angle
else:
heading_angle = self.heading_list[index]
# Size
size_class, size_residual = size2class(self.size_list[index],
self.type_list[index])
# Data Augmentation
if self.random_flip:
# note: rot_angle won't be correct if we have random_flip
# so do not use it in case of random flipping.
if np.random.random()>0.5: # 50% chance flipping
point_set[:,0] *= -1
box3d_center[0] *= -1
heading_angle = np.pi - heading_angle
if self.random_shift:
dist = np.sqrt(np.sum(box3d_center[0]**2+box3d_center[1]**2))
shift = np.clip(np.random.randn()*dist*0.05, dist*0.8, dist*1.2)
point_set[:,2] += shift
box3d_center[2] += shift
angle_class, angle_residual = angle2class(heading_angle,
NUM_HEADING_BIN)
if self.one_hot:
return point_set, seg, box3d_center, angle_class, angle_residual,\
size_class, size_residual, rot_angle, one_hot_vec
else:
return point_set, seg, box3d_center, angle_class, angle_residual,\
size_class, size_residual, rot_angle
def get_center_view_rot_angle(self, index):
''' Get the frustum rotation angle, it isshifted by pi/2 so that it
can be directly used to adjust GT heading angle '''
return np.pi/2.0 + self.frustum_angle_list[index]
def get_box3d_center(self, index):
''' Get the center (XYZ) of 3D bounding box. '''
box3d_center = (self.box3d_list[index][0,:] + \
self.box3d_list[index][6,:])/2.0
return box3d_center
def get_center_view_box3d_center(self, index):
''' Frustum rotation of 3D bounding box center. '''
box3d_center = (self.box3d_list[index][0,:] + \
self.box3d_list[index][6,:])/2.0
return rotate_pc_along_y(np.expand_dims(box3d_center,0), \
self.get_center_view_rot_angle(index)).squeeze()
def get_center_view_box3d(self, index):
''' Frustum rotation of 3D bounding box corners. '''
box3d = self.box3d_list[index]
box3d_center_view = np.copy(box3d)
return rotate_pc_along_y(box3d_center_view, \
self.get_center_view_rot_angle(index))
def get_center_view_point_set(self, index):
''' Frustum rotation of point clouds.
NxC points with first 3 channels as XYZ
z is facing forward, x is left ward, y is downward
'''
# Use np.copy to avoid corrupting original data
point_set = np.copy(self.input_list[index])
return rotate_pc_along_y(point_set, \
self.get_center_view_rot_angle(index))
# ----------------------------------
# Helper functions for evaluation
# ----------------------------------
def get_3d_box(box_size, heading_angle, center):
''' Calculate 3D bounding box corners from its parameterization.
Input:
box_size: tuple of (l,w,h)
heading_angle: rad scalar, clockwise from pos x axis
center: tuple of (x,y,z)
Output:
corners_3d: numpy array of shape (8,3) for 3D box cornders
'''
def roty(t):
c = np.cos(t)
s = np.sin(t)
return np.array([[c, 0, s],
[0, 1, 0],
[-s, 0, c]])
R = roty(heading_angle)
l,w,h = box_size
x_corners = [l/2,l/2,-l/2,-l/2,l/2,l/2,-l/2,-l/2];
y_corners = [h/2,h/2,h/2,h/2,-h/2,-h/2,-h/2,-h/2];
z_corners = [w/2,-w/2,-w/2,w/2,w/2,-w/2,-w/2,w/2];
corners_3d = np.dot(R, np.vstack([x_corners,y_corners,z_corners]))
corners_3d[0,:] = corners_3d[0,:] + center[0];
corners_3d[1,:] = corners_3d[1,:] + center[1];
corners_3d[2,:] = corners_3d[2,:] + center[2];
corners_3d = np.transpose(corners_3d)
return corners_3d
def compute_box3d_iou(center_pred,
heading_logits, heading_residuals,
size_logits, size_residuals,
center_label,
heading_class_label, heading_residual_label,
size_class_label, size_residual_label):
''' Compute 3D bounding box IoU from network output and labels.
All inputs are numpy arrays.
Inputs:
center_pred: (B,3)
heading_logits: (B,NUM_HEADING_BIN)
heading_residuals: (B,NUM_HEADING_BIN)
size_logits: (B,NUM_SIZE_CLUSTER)
size_residuals: (B,NUM_SIZE_CLUSTER,3)
center_label: (B,3)
heading_class_label: (B,)
heading_residual_label: (B,)
size_class_label: (B,)
size_residual_label: (B,3)
Output:
iou2ds: (B,) birdeye view oriented 2d box ious
iou3ds: (B,) 3d box ious
'''
batch_size = heading_logits.shape[0]
heading_class = np.argmax(heading_logits, 1) # B
heading_residual = np.array([heading_residuals[i,heading_class[i]] \
for i in range(batch_size)]) # B,
size_class = np.argmax(size_logits, 1) # B
size_residual = np.vstack([size_residuals[i,size_class[i],:] \
for i in range(batch_size)])
iou2d_list = []
iou3d_list = []
for i in range(batch_size):
heading_angle = class2angle(heading_class[i],
heading_residual[i], NUM_HEADING_BIN)
box_size = class2size(size_class[i], size_residual[i])
corners_3d = get_3d_box(box_size, heading_angle, center_pred[i])
heading_angle_label = class2angle(heading_class_label[i],
heading_residual_label[i], NUM_HEADING_BIN)
box_size_label = class2size(size_class_label[i], size_residual_label[i])
corners_3d_label = get_3d_box(box_size_label,
heading_angle_label, center_label[i])
iou_3d, iou_2d = box3d_iou(corners_3d, corners_3d_label)
iou3d_list.append(iou_3d)
iou2d_list.append(iou_2d)
return np.array(iou2d_list, dtype=np.float32), \
np.array(iou3d_list, dtype=np.float32)
def visualize_frustum_data():
"""
This method helps us to visualize training data which was created from the
train and validation splitted text files
Parameters:
dataset_idx (int): training sample to consider for visualization
Returns:
None
"""
import mayavi.mlab as mlab
median_list = []
dataset = FrustumDataset(1024,
split='val',
rotate_to_center=True,
random_flip=True,
random_shift=True)
for i in range(len(dataset)):
data = dataset[i]
print(('Center: ', data[2], \
'angle_class: ', data[3], 'angle_res:', data[4], \
'size_class: ', data[5], 'size_residual:', data[6], \
'real_size:', g_type_mean_size[g_class2type[data[5]]]+data[6]))
print(('Frustum angle: ', dataset.frustum_angle_list[i]))
median_list.append(np.median(data[0][:,0]))
print((data[2], dataset.box3d_list[i], median_list[-1]))
box3d_from_label = get_3d_box(class2size(data[5],data[6]), class2angle(data[3], data[4],12), data[2])
ps = data[0]
seg = data[1]
fig = mlab.figure(figure=None, bgcolor=(0.4,0.4,0.4), fgcolor=None, engine=None, size=(1000, 500))
mlab.points3d(ps[:,0], ps[:,1], ps[:,2], seg, mode='point', colormap='gnuplot', scale_factor=1, figure=fig)
mlab.points3d(0, 0, 0, color=(1,1,1), mode='sphere', scale_factor=0.2, figure=fig)
draw_gt_boxes3d([box3d_from_label], fig, color=(1,0,0))
mlab.orientation_axes()
input()
print(np.mean(np.abs(median_list)))
if __name__ == '__main__':
visualize_frustum_data()