-
-
Notifications
You must be signed in to change notification settings - Fork 60
/
Copy pathsympy.py
572 lines (500 loc) · 18.6 KB
/
sympy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
# -*- coding: utf-8 -*-
"""
Converts expressions from SymPy to Mathics expressions.
Conversion to SymPy is handled directly in BaseElement descendants.
"""
from typing import Optional, Type, Union
import sympy
from sympy import Symbol as Sympy_Symbol, false as SympyFalse, true as SympyTrue
# Import the singleton class
from sympy.core.numbers import S
BasicSympy = sympy.Expr
from mathics.core.atoms import (
MATHICS3_COMPLEX_I,
Complex,
Integer,
Integer0,
Integer1,
IntegerM1,
MachineReal,
Rational,
RationalOneHalf,
Real,
String,
)
from mathics.core.convert.expression import to_expression, to_mathics_list
from mathics.core.convert.matrix import matrix_data
from mathics.core.element import BaseElement
from mathics.core.expression import Expression
from mathics.core.expression_predefined import (
MATHICS3_COMPLEX_INFINITY,
MATHICS3_INFINITY,
MATHICS3_NEG_INFINITY,
)
from mathics.core.list import ListExpression
from mathics.core.number import FP_MANTISA_BINARY_DIGITS
from mathics.core.symbols import (
Symbol,
SymbolFalse,
SymbolNull,
SymbolPlus,
SymbolPower,
SymbolTimes,
SymbolTrue,
sympy_slot_prefix,
sympy_symbol_prefix,
)
from mathics.core.systemsymbols import (
SymbolC,
SymbolCatalan,
SymbolE,
SymbolEqual,
SymbolEulerGamma,
SymbolFunction,
SymbolGoldenRatio,
SymbolGreater,
SymbolGreaterEqual,
SymbolIndeterminate,
SymbolLess,
SymbolLessEqual,
SymbolMatrixPower,
SymbolO,
SymbolPi,
SymbolPiecewise,
SymbolSlot,
SymbolUnequal,
)
SymbolPrime = Symbol("Prime")
SymbolRoot = Symbol("Root")
SymbolRootSum = Symbol("RootSum")
mathics_to_sympy = {} # here we have: name -> sympy object
sympy_to_mathics = {}
sympy_singleton_to_mathics = {
None: SymbolNull,
S.Catalan: SymbolCatalan,
S.ComplexInfinity: MATHICS3_COMPLEX_INFINITY,
S.EulerGamma: SymbolEulerGamma,
S.Exp1: SymbolE,
S.GoldenRatio: SymbolGoldenRatio,
S.Half: RationalOneHalf,
S.ImaginaryUnit: MATHICS3_COMPLEX_I,
S.Infinity: MATHICS3_INFINITY,
S.NaN: SymbolIndeterminate,
S.NegativeInfinity: MATHICS3_NEG_INFINITY,
S.NegativeOne: IntegerM1,
S.One: Integer1,
S.Pi: SymbolPi,
S.Zero: Integer0,
SympyFalse: SymbolFalse,
SympyTrue: SymbolTrue,
}
mathics_to_sympy_singleton = {
key: val for val, key in sympy_singleton_to_mathics.items()
}
def is_Cn_expr(name) -> bool:
if name.startswith(sympy_symbol_prefix) or name.startswith(sympy_slot_prefix):
return False
if not name.startswith("C"):
return False
n = name[1:]
if n and n.isdigit():
return True
return False
def to_sympy_matrix(data, **kwargs) -> Optional[sympy.MutableDenseMatrix]:
"""Convert a Mathics matrix to one that can be used by Sympy.
None is returned if we can't convert to a Sympy matrix.
"""
if not isinstance(data, list):
data = matrix_data(data)
try:
return sympy.Matrix(data)
except (TypeError, AssertionError, ValueError):
return None
class SympyExpression(BasicSympy):
is_Function = True
nargs = None
def __new__(cls, *exprs):
# sympy simplify may also recreate the object if simplification occurred
# in the elements
if all(isinstance(expr, BasicSympy) for expr in exprs):
# called with SymPy arguments
obj = BasicSympy.__new__(cls, *exprs)
elif len(exprs) == 1 and isinstance(exprs[0], Expression):
# called with Mathics argument
expr = exprs[0]
sympy_head = expr.head.to_sympy()
sympy_elements = [element.to_sympy() for element in expr.elements]
if sympy_head is None or None in sympy_elements:
return None
obj = BasicSympy.__new__(cls, sympy_head, *sympy_elements)
obj.expr = expr
else:
raise TypeError
return obj
"""def new(self, *args):
from mathics.core import expression
expr = expression.Expression(from_sympy(args[0]),
*(from_sympy(arg) for arg in args[1:]))
return SympyExpression(expr)"""
@property
def func(self):
class SympyExpressionFunc:
def __new__(cls, *args):
return SympyExpression(self.expr)
# return SympyExpression(expression.Expression(self.expr.head,
# *(from_sympy(arg) for arg in args[1:])))
return SympyExpressionFunc
def has_any_symbols(self, *syms) -> bool:
result = any(arg.has_any_symbols(*syms) for arg in self.args)
return result
def _eval_subs(self, old, new):
if self == old:
return new
old, new = from_sympy(old), from_sympy(new)
old_name = old.get_name()
if old_name:
new_expr = self.expr.replace_vars({old_name: new})
return SympyExpression(new_expr)
return self
def _eval_rewrite(self, pattern, rule, **hints):
return self
@property
def is_commutative(self) -> bool:
if all(getattr(t, "is_commutative", False) for t in self.args):
return True
else:
return False
def __str__(self) -> str:
return "%s[%s]" % (super(SympyExpression, self).__str__(), self.expr)
class SympyPrime(sympy.Function):
"""
A safe wrapper for sympy.prime
"""
@classmethod
def eval(cls, n):
if n.is_Integer and n > 0:
try:
return sympy.prime(n)
except Exception:
# n is too big, SymPy doesn't know the n-th prime
pass
def expression_to_sympy(expr: Expression, **kwargs):
"""
Convert `expr` to its sympy form.
"""
if "convert_all_global_functions" in kwargs:
if len(expr.elements) > 0 and kwargs["convert_all_global_functions"]:
if expr.get_head_name().startswith("Global`"):
return expr._as_sympy_function(**kwargs)
if "converted_functions" in kwargs:
functions = kwargs["converted_functions"]
if len(expr._elements) > 0 and expr.get_head_name() in functions:
sym_args = [element.to_sympy() for element in expr._elements]
if None in sym_args:
return None
func = sympy.Function(str(sympy_symbol_prefix + expr.get_head_name()))(
*sym_args
)
return func
lookup_name = expr.get_lookup_name()
builtin = mathics_to_sympy.get(lookup_name)
if builtin is not None:
sympy_expr = builtin.to_sympy(expr, **kwargs)
if sympy_expr is not None:
return sympy_expr
return SympyExpression(expr)
def symbol_to_sympy(symbol: Symbol, **kwargs) -> Sympy_Symbol:
"""
Convert `symbol` to its sympy form.
"""
result = mathics_to_sympy_singleton.get(symbol, None)
if result is not None:
return result
if symbol.sympy_dummy is not None:
return symbol.sympy_dummy
builtin = mathics_to_sympy.get(symbol.name)
if builtin is None or not builtin.sympy_name or not builtin.is_constant(): # nopep8
return Sympy_Symbol(sympy_symbol_prefix + symbol.name)
return builtin.to_sympy(symbol, **kwargs)
def to_numeric_sympy_args(mathics_args: Type[BaseElement], evaluation) -> list:
"""
Convert Mathics arguments, such as the arguments in an evaluation
method a Python list that is sutiable for feeding as arguments
into SymPy.
We make use of fast conversions for literals.
"""
from mathics.eval.numerify import numerify
if mathics_args.is_literal:
sympy_args = [mathics_args.value]
else:
args = numerify(mathics_args, evaluation).get_sequence()
sympy_args = [a.to_sympy() for a in args]
return sympy_args
def from_sympy_matrix(
expr: Union[sympy.Matrix, sympy.ImmutableMatrix]
) -> ListExpression:
"""
Convert `expr` of the type sympy.Matrix or sympy.ImmutableMatrix to
a Mathics list.
"""
if len(expr.shape) == 2 and (expr.shape[1] == 1):
# This is a vector (only one column)
# Transpose and select first row to get result equivalent to Mathematica
return to_mathics_list(*expr.T.tolist()[0], elements_conversion_fn=from_sympy)
else:
return to_mathics_list(*expr.tolist(), elements_conversion_fn=from_sympy)
"""
sympy_conversion_by_type = {
complex: lambda expr: Complex(Real(expr.real), Real(expr.imag)),
int: lambda x: Integer(x),
float: lambda x: Real(x),
tuple: lambda expr: to_mathics_list(*expr, elements_conversion_fn=from_sympy),
list: lambda expr: to_mathics_list(*expr, elements_conversion_fn=from_sympy),
str: lambda x: String(x),
sympy.Matrix :from_sympy_matrix,
sympy.ImmutableMatrix :from_sympy_matrix,
sympy.MatPow: lambda expr: Expression(
SymbolMatrixPower, from_sympy(expr.base), from_sympy(expr.exp)
),
SympyExpression: lambda expr: expr.expr,
SympyPrime: lambda expr: Expression(SymbolPrime, from_sympy(expr.args[0])),
sympy.RootSum: lambda expr: Expression(SymbolRootSum, from_sympy(expr.poly), from_sympy(expr.fun)),
sympy.Tuple: lambda expr: to_mathics_list(*expr, elements_conversion_fn=from_sympy),
}
"""
# def new_from_sympy(expr)->BaseElement:
# """
# converts a SymPy object to a Mathics element.
# """
# try:
# return sympy_singleton_to_mathics[expr]
# except (KeyError, TypeError):
# pass
#
# return sympy_conversion_by_type.get(type(expr), old_from_sympy)(expr)
def old_from_sympy(expr) -> BaseElement:
"""
converts a SymPy object to a Mathics element.
"""
if isinstance(expr, (tuple, list)):
return to_mathics_list(*expr, elements_conversion_fn=from_sympy)
if isinstance(expr, int):
return Integer(expr)
if isinstance(expr, float):
return Real(expr)
if isinstance(expr, complex):
return Complex(Real(expr.real), Real(expr.imag))
if isinstance(expr, str):
return String(expr)
if expr is None:
return SymbolNull
if isinstance(expr, sympy.Matrix) or isinstance(expr, sympy.ImmutableMatrix):
return from_sympy_matrix(expr)
if isinstance(expr, sympy.MatPow):
return Expression(
SymbolMatrixPower, from_sympy(expr.base), from_sympy(expr.exp)
)
if expr.is_Atom:
name = None
if expr.is_Symbol:
name = str(expr)
if isinstance(expr, sympy.Dummy):
name = name + ("__Dummy_%d" % expr.dummy_index)
# Probably, this should be the value attribute
return Symbol(name, sympy_dummy=expr)
if is_Cn_expr(name):
return Expression(SymbolC, Integer(int(name[1:])))
if name.startswith(sympy_symbol_prefix):
name = name[len(sympy_symbol_prefix) :]
if name.startswith(sympy_slot_prefix):
index = name[len(sympy_slot_prefix) :]
return Expression(SymbolSlot, Integer(int(index)))
elif expr.is_NumberSymbol:
name = str(expr)
if name is not None:
builtin = sympy_to_mathics.get(name)
if builtin is not None:
name = builtin.get_name()
return Symbol(name)
elif isinstance(expr, sympy.core.numbers.Infinity):
return MATHICS3_INFINITY
elif isinstance(expr, sympy.core.numbers.ComplexInfinity):
return MATHICS3_COMPLEX_INFINITY
elif isinstance(expr, sympy.core.numbers.NegativeInfinity):
return MATHICS3_NEG_INFINITY
elif isinstance(expr, sympy.core.numbers.ImaginaryUnit):
return MATHICS3_COMPLEX_I
elif isinstance(expr, sympy.Integer):
return Integer(int(expr))
elif isinstance(expr, sympy.Rational):
numerator, denominator = map(int, expr.as_numer_denom())
if denominator == 0:
if numerator > 0:
return MATHICS3_INFINITY
elif numerator < 0:
return MATHICS3_NEG_INFINITY
else:
assert numerator == 0
return SymbolIndeterminate
return Rational(numerator, denominator)
elif isinstance(expr, sympy.Float):
if expr._prec == FP_MANTISA_BINARY_DIGITS:
return MachineReal(float(expr))
return Real(expr)
elif isinstance(expr, sympy.core.numbers.NaN):
return SymbolIndeterminate
elif isinstance(expr, sympy.core.function.FunctionClass):
return Symbol(str(expr))
elif expr is sympy.true:
return SymbolTrue
elif expr is sympy.false:
return SymbolFalse
if expr.is_number and all([x.is_Number for x in expr.as_real_imag()]):
# Hack to convert <Integer> * I to Complex[0, <Integer>]
try:
return Complex(*[from_sympy(arg) for arg in expr.as_real_imag()])
except ValueError:
# The exception happens if one of the components is infinity
pass
if expr.is_Add:
return to_expression(
SymbolPlus, *sorted([from_sympy(arg) for arg in expr.args])
)
elif expr.is_Mul:
return to_expression(
SymbolTimes, *sorted([from_sympy(arg) for arg in expr.args])
)
elif expr.is_Pow:
return to_expression(SymbolPower, *[from_sympy(arg) for arg in expr.args])
elif expr.is_Equality:
return to_expression(SymbolEqual, *[from_sympy(arg) for arg in expr.args])
elif isinstance(expr, SympyExpression):
return expr.expr
elif isinstance(expr, sympy.Piecewise):
args = expr.args
return Expression(
SymbolPiecewise,
ListExpression(
*[
to_mathics_list(from_sympy(case), from_sympy(cond))
for case, cond in args
]
),
)
elif isinstance(expr, SympyPrime):
return Expression(SymbolPrime, from_sympy(expr.args[0]))
elif isinstance(expr, sympy.RootSum):
return Expression(SymbolRootSum, from_sympy(expr.poly), from_sympy(expr.fun))
elif isinstance(expr, sympy.PurePoly):
coeffs = expr.coeffs()
monoms = expr.monoms()
result = []
for coeff, monom in zip(coeffs, monoms):
factors = []
if coeff != 1:
factors.append(from_sympy(coeff))
for index, exp in enumerate(monom):
if exp != 0:
slot = Expression(SymbolSlot, Integer(index + 1))
if exp == 1:
factors.append(slot)
else:
factors.append(Expression(SymbolPower, slot, from_sympy(exp)))
if factors:
if len(factors) == 1:
result.append(factors[0])
else:
result.append(Expression(SymbolTimes, *factors))
else:
result.append(Integer1)
return Expression(SymbolFunction, Expression(SymbolPlus, *result))
elif isinstance(expr, sympy.CRootOf):
try:
e, i = expr.args
except ValueError:
return SymbolNull
try:
e = sympy.PurePoly(e)
except Exception:
pass
return Expression(SymbolRoot, from_sympy(e), Integer(i + 1))
elif isinstance(expr, sympy.Lambda):
vars = [
sympy.Symbol("%s%d" % (sympy_slot_prefix, index + 1))
for index in range(len(expr.variables))
]
return Expression(SymbolFunction, from_sympy(expr(*vars)))
elif expr.is_Function or isinstance(
expr, (sympy.Integral, sympy.Derivative, sympy.Sum, sympy.Product)
):
if isinstance(expr, sympy.Integral):
name = "Integral"
elif isinstance(expr, sympy.Derivative):
name = "Derivative"
margs = []
for arg in expr.args:
# parse (x, 1) ==> just x for test_conversion
# IMHO this should be removed in future versions
if isinstance(arg, sympy.Tuple):
if arg[1] == 1:
margs.append(from_sympy(arg[0]))
else:
margs.append(from_sympy(arg))
else:
margs.append(from_sympy(arg))
builtin = sympy_to_mathics.get(name)
return builtin.from_sympy(name, margs)
elif isinstance(expr, sympy.sign):
name = "Sign"
else:
name = expr.func.__name__
if is_Cn_expr(name):
return Expression(
Expression(Symbol("C"), Integer(int(name[1:]))),
*[from_sympy(arg) for arg in expr.args]
)
if name.startswith(sympy_symbol_prefix):
name = name[len(sympy_symbol_prefix) :]
args = [from_sympy(arg) for arg in expr.args]
builtin = sympy_to_mathics.get(name)
if builtin is not None:
return builtin.from_sympy(name, args)
return Expression(Symbol(name), *args)
elif isinstance(expr, sympy.Tuple):
return to_mathics_list(*expr.args, elements_conversion_fn=from_sympy)
# elif isinstance(expr, sympy.Sum):
# return Expression('Sum', )
elif isinstance(expr, sympy.LessThan):
return to_expression(
SymbolLessEqual, *expr.args, elements_conversion_fn=from_sympy
)
elif isinstance(expr, sympy.StrictLessThan):
return to_expression(SymbolLess, *expr.args, elements_conversion_fn=from_sympy)
elif isinstance(expr, sympy.GreaterThan):
return to_expression(
SymbolGreaterEqual, *expr.args, elements_conversion_fn=from_sympy
)
elif isinstance(expr, sympy.StrictGreaterThan):
return to_expression(
SymbolGreater, *expr.args, elements_conversion_fn=from_sympy
)
elif isinstance(expr, sympy.Unequality):
return to_expression(
SymbolUnequal, *expr.args, elements_conversion_fn=from_sympy
)
elif isinstance(expr, sympy.Equality):
return to_expression(SymbolEqual, *expr.args, elements_conversion_fn=from_sympy)
elif isinstance(expr, sympy.O):
if expr.args[0].func == sympy.core.power.Pow:
[var, power] = [from_sympy(arg) for arg in expr.args[0].args]
o = Expression(SymbolO, var)
return Expression(SymbolPower, o, power)
else:
return Expression(SymbolO, from_sympy(expr.args[0]))
else:
raise ValueError(
"Unknown SymPy expression: {} (instance of {})".format(
expr, str(expr.__class__)
)
)
from_sympy = old_from_sympy