-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils_graphsaint.py
312 lines (268 loc) · 11.5 KB
/
utils_graphsaint.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
import scipy.sparse as sp
import numpy as np
import sys
import json
import os
from sklearn.preprocessing import StandardScaler
from torch_geometric.data import InMemoryDataset, Data
import torch
from itertools import repeat
from torch_geometric.data import NeighborSampler
class DataGraphSAINT:
'''datasets used in GraphSAINT paper'''
def __init__(self, dataset, **kwargs):
dataset_str='data/'+dataset+'/'
adj_full = sp.load_npz(dataset_str+'adj_full.npz')
self.nnodes = adj_full.shape[0]
if dataset == 'ogbn-arxiv':
adj_full = adj_full + adj_full.T
adj_full[adj_full > 1] = 1
role = json.load(open(dataset_str+'role.json','r'))
idx_train = role['tr']
idx_test = role['te']
idx_val = role['va']
if 'label_rate' in kwargs:
label_rate = kwargs['label_rate']
if label_rate < 1:
idx_train = idx_train[:int(label_rate*len(idx_train))]
self.adj_train = adj_full[np.ix_(idx_train, idx_train)]
self.adj_val = adj_full[np.ix_(idx_val, idx_val)]
self.adj_test = adj_full[np.ix_(idx_test, idx_test)]
feat = np.load(dataset_str+'feats.npy')
# ---- normalize feat ----
feat_train = feat[idx_train]
scaler = StandardScaler()
scaler.fit(feat_train)
feat = scaler.transform(feat)
self.feat_train = feat[idx_train]
self.feat_val = feat[idx_val]
self.feat_test = feat[idx_test]
class_map = json.load(open(dataset_str + 'class_map.json','r'))
labels = self.process_labels(class_map)
self.labels_train = labels[idx_train]
self.labels_val = labels[idx_val]
self.labels_test = labels[idx_test]
self.data_full = GraphData(adj_full, feat, labels, idx_train, idx_val, idx_test)
self.class_dict = None
self.class_dict2 = None
self.adj_full = adj_full
self.feat_full = feat
self.labels_full = labels
self.idx_train = np.array(idx_train)
self.idx_val = np.array(idx_val)
self.idx_test = np.array(idx_test)
self.samplers = None
def process_labels(self, class_map):
"""
setup vertex property map for output classests
"""
num_vertices = self.nnodes
if isinstance(list(class_map.values())[0], list):
num_classes = len(list(class_map.values())[0])
self.nclass = num_classes
class_arr = np.zeros((num_vertices, num_classes))
for k,v in class_map.items():
class_arr[int(k)] = v
else:
class_arr = np.zeros(num_vertices, dtype=np.int_)
for k, v in class_map.items():
class_arr[int(k)] = v
class_arr = class_arr - class_arr.min()
self.nclass = max(class_arr) + 1
return class_arr
def retrieve_class(self, c, num=256):
if self.class_dict is None:
self.class_dict = {}
for i in range(self.nclass):
self.class_dict['class_%s'%i] = (self.labels_train == i)
idx = np.arange(len(self.labels_train))
idx = idx[self.class_dict['class_%s'%c]]
return np.random.permutation(idx)[:num]
def retrieve_class_sampler(self, c, adj, transductive, num=256, args=None):
if args.nlayers == 1:
sizes = [30]
if args.nlayers == 2:
if args.dataset in ['reddit', 'flickr']:
if args.option == 0:
sizes = [15, 8]
if args.option == 1:
sizes = [20, 10]
if args.option == 2:
sizes = [25, 10]
else:
sizes = [10, 5]
if self.class_dict2 is None:
print(sizes)
self.class_dict2 = {}
for i in range(self.nclass):
if transductive:
idx_train = np.array(self.idx_train)
idx = idx_train[self.labels_train == i]
else:
idx = np.arange(len(self.labels_train))[self.labels_train==i]
self.class_dict2[i] = idx
if self.samplers is None:
self.samplers = []
for i in range(self.nclass):
node_idx = torch.LongTensor(self.class_dict2[i])
if len(node_idx) == 0:
continue
self.samplers.append(NeighborSampler(adj,
node_idx=node_idx,
sizes=sizes, batch_size=num,
num_workers=8, return_e_id=False,
num_nodes=adj.size(0),
shuffle=True))
batch = np.random.permutation(self.class_dict2[c])[:num]
out = self.samplers[c].sample(batch)
return out
def retrieve_class_sampler_v2(self, dataset, c, adj, transductive, num=256, nlayers=2, option=0):
if nlayers == 1:
sizes = [30]
if nlayers == 2:
if dataset in ['reddit', 'flickr']:
if option == 0:
sizes = [15, 8]
if option == 1:
sizes = [20, 10]
if option == 2:
sizes = [25, 10]
else:
sizes = [10, 5]
if self.class_dict2 is None:
print(sizes)
self.class_dict2 = {}
for i in range(self.nclass):
if transductive:
idx_train = np.array(self.idx_train)
idx = idx_train[self.labels_train == i]
else:
idx = np.arange(len(self.labels_train))[self.labels_train==i]
self.class_dict2[i] = idx
if self.samplers is None:
self.samplers = []
for i in range(self.nclass):
node_idx = torch.LongTensor(self.class_dict2[i])
if len(node_idx) == 0:
continue
self.samplers.append(NeighborSampler(adj,
node_idx=node_idx,
sizes=sizes, batch_size=num,
num_workers=4, return_e_id=False,
num_nodes=adj.size(0),
shuffle=True))
batch = np.random.permutation(self.class_dict2[c])[:num]
out = self.samplers[c].sample(batch)
return out
def retrieve_class_sampler_v3(self,transductive, num_per_class=64):
#num = num_per_class*self.nclass
if self.class_dict2 is None:
self.class_dict2 = {}
node_idx = []
for i in range(self.nclass):
if transductive:
idx_train = np.array(self.idx_train)
idx = idx_train[self.labels_train == i]
else:
#tmp = np.arange(len(self.labels_train))
idx = np.arange(len(self.labels_train))[self.labels_train==i]
self.class_dict2[i] = idx
node_idx.append(np.random.permutation(self.class_dict2[i])[:num_per_class])
return np.array(node_idx).reshape(-1)
def retrieve_class_sampler_val(self,transductive, num_per_class=64):
#num = num_per_class*self.nclass
if self.class_dict2 is None:
self.class_dict2 = {}
node_idx = []
for i in range(self.nclass):
if transductive:
idx_val = np.array(self.idx_val)
idx = idx_val[self.labels_val == i]
else:
idx = np.arange(len(self.labels_val))[self.labels_val==i]
self.class_dict2[i] = idx
#node_idx.append(np.random.permutation(self.class_dict2[i])[:num_per_class])
node_idx += np.random.permutation(self.class_dict2[i])[:num_per_class].tolist()
self.class_dict2 = None
return np.array(node_idx).reshape(-1)
def retrieve_class_sampler_train(self,transductive, num_per_class=64):
#num = num_per_class*self.nclass
if self.class_dict2 is None:
self.class_dict2 = {}
node_idx = []
for i in range(self.nclass):
if transductive:
idx_val = np.array(self.idx_val)
idx = idx_val[self.labels_val == i]
else:
idx = np.arange(len(self.labels_val))[self.labels_val==i]
self.class_dict2[i] = idx
#node_idx.append(np.random.permutation(self.class_dict2[i])[:num_per_class])
node_idx += np.random.permutation(self.class_dict2[i])[:num_per_class].tolist()
self.class_dict2 = None
return np.array(node_idx).reshape(-1)
class GraphData:
def __init__(self, adj, features, labels, idx_train, idx_val, idx_test):
self.adj = adj
self.features = features
self.labels = labels
self.idx_train = idx_train
self.idx_val = idx_val
self.idx_test = idx_test
class Data2Pyg:
def __init__(self, data, device='cuda', transform=None, **kwargs):
self.data_train = Dpr2Pyg(data.data_train, transform=transform)[0].to(device)
self.data_val = Dpr2Pyg(data.data_val, transform=transform)[0].to(device)
self.data_test = Dpr2Pyg(data.data_test, transform=transform)[0].to(device)
self.nclass = data.nclass
self.nfeat = data.nfeat
self.class_dict = None
def retrieve_class(self, c, num=256):
if self.class_dict is None:
self.class_dict = {}
for i in range(self.nclass):
self.class_dict['class_%s'%i] = (self.data_train.y == i).cpu().numpy()
idx = np.arange(len(self.data_train.y))
idx = idx[self.class_dict['class_%s'%c]]
return np.random.permutation(idx)[:num]
class Dpr2Pyg(InMemoryDataset):
def __init__(self, dpr_data, transform=None, **kwargs):
root = 'data/' # dummy root; does not mean anything
self.dpr_data = dpr_data
super(Dpr2Pyg, self).__init__(root, transform)
pyg_data = self.process()
self.data, self.slices = self.collate([pyg_data])
self.transform = transform
def process(self):
dpr_data = self.dpr_data
edge_index = torch.LongTensor(dpr_data.adj.nonzero())
# by default, the features in pyg data is dense
if sp.issparse(dpr_data.features):
x = torch.FloatTensor(dpr_data.features.todense()).float()
else:
x = torch.FloatTensor(dpr_data.features).float()
y = torch.LongTensor(dpr_data.labels)
data = Data(x=x, edge_index=edge_index, y=y)
data.train_mask = None
data.val_mask = None
data.test_mask = None
return data
def get(self, idx):
data = self.data.__class__()
if hasattr(self.data, '__num_nodes__'):
data.num_nodes = self.data.__num_nodes__[idx]
for key in self.data.keys:
item, slices = self.data[key], self.slices[key]
s = list(repeat(slice(None), item.dim()))
s[self.data.__cat_dim__(key, item)] = slice(slices[idx],
slices[idx + 1])
data[key] = item[s]
return data
@property
def raw_file_names(self):
return ['some_file_1', 'some_file_2', ...]
@property
def processed_file_names(self):
return ['data.pt']
def _download(self):
pass