-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathlamb.py
187 lines (155 loc) · 6.87 KB
/
lamb.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
import math
import torch
from torch.optim import Optimizer
from torch import nn
class LAMB(Optimizer):
r"""Implements Lamb algorithm.
It has been proposed in `Large Batch Optimization for Deep Learning: Training BERT in 76 minutes`_.
Arguments:
params (iterable): iterable of parameters to optimize or dicts defining
parameter groups
lr (float, optional): learning rate (default: 1e-3)
betas (Tuple[float, float], optional): coefficients used for computing
running averages of gradient and its square (default: (0.9, 0.999))
eps (float, optional): term added to the denominator to improve
numerical stability (default: 1e-8)
weight_decay (float, optional): weight decay (L2 penalty) (default: 0)
adam (bool, optional): always use trust ratio = 1, which turns this into
Adam. Useful for comparison purposes.
.. _Large Batch Optimization for Deep Learning: Training BERT in 76 minutes:
https://arxiv.org/abs/1904.00962
"""
def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-6,
weight_decay=0):
if not 0.0 <= lr:
raise ValueError("Invalid learning rate: {}".format(lr))
if not 0.0 <= eps:
raise ValueError("Invalid epsilon value: {}".format(eps))
if not 0.0 <= betas[0] < 1.0:
raise ValueError(
"Invalid beta parameter at index 0: {}".format(betas[0]))
if not 0.0 <= betas[1] < 1.0:
raise ValueError(
"Invalid beta parameter at index 1: {}".format(betas[1]))
defaults = dict(lr=lr, betas=betas, eps=eps,
weight_decay=weight_decay)
super().__init__(params, defaults)
@torch.no_grad()
def step(self, closure=None):
"""Performs a single optimization step.
Arguments:
closure (callable, optional): A closure that reevaluates the model
and returns the loss.
"""
loss = None
if closure is not None:
loss = closure()
torch.nn.utils.clip_grad_norm_(
parameters=[
p for group in self.param_groups for p in group['params']],
max_norm=1.0,
norm_type=2
)
for group in self.param_groups:
for p in group['params']:
if p.grad is None:
continue
grad = p.grad.data
if grad.is_sparse:
raise RuntimeError(
'Lamb does not support sparse gradients, consider SparseAdam instad.')
state = self.state[p]
# State initialization
if len(state) == 0:
state['step'] = 0
# Exponential moving average of gradient values
state['exp_avg'] = torch.zeros_like(p.data)
# Exponential moving average of squared gradient values
state['exp_avg_sq'] = torch.zeros_like(p.data)
exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq']
beta1, beta2 = group['betas']
state['step'] += 1
# Decay the first and second moment running average coefficient
# m_t
exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1)
# v_t
exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1 - beta2)
# Paper v3 does not use debiasing.
# bias_correction1 = 1 - beta1 ** state['step']
# bias_correction2 = 1 - beta2 ** state['step']
# Apply bias to lr to avoid broadcast.
# * math.sqrt(bias_correction2) / bias_correction1
scaled_lr = group['lr']
update = exp_avg / exp_avg_sq.sqrt().add(group['eps'])
if group['weight_decay'] != 0:
update.add_(p.data, alpha=group['weight_decay'])
w_norm = torch.norm(p)
g_norm = torch.norm(update)
trust_ratio = torch.where(
w_norm > 0 and g_norm > 0,
w_norm / g_norm,
torch.ones_like(w_norm)
)
scaled_lr *= trust_ratio.item()
p.data.add_(update, alpha=-scaled_lr)
return loss
def create_lamb_optimizer(model, lr, betas=(0.9, 0.999), eps=1e-6,
weight_decay=0, exclude_layers=['bn', 'ln', 'bias']):
# can only exclude BatchNorm, LayerNorm, bias layers
# ['bn', 'ln'] will exclude BatchNorm, LayerNorm layers
# ['bn', 'ln', 'bias'] will exclude BatchNorm, LayerNorm, bias layers
# [] will not exclude any layers
if 'bias' in exclude_layers:
params = [
dict(params=get_common_parameters(
model, exclude_func=get_norm_bias_parameters)),
dict(params=get_norm_bias_parameters(model), weight_decay=0)
]
elif len(exclude_layers) > 0:
params = [
dict(params=get_common_parameters(
model, exclude_func=get_norm_parameters)),
dict(params=get_norm_parameters(model), weight_decay=0)
]
else:
params = model.parameters()
optimizer = LAMB(params, lr, betas=betas, eps=eps,
weight_decay=weight_decay)
return optimizer
BN_CLS = (nn.BatchNorm1d, nn.BatchNorm2d, nn.BatchNorm3d)
def get_parameters_from_cls(module, cls_):
def get_members_fn(m):
if isinstance(m, cls_):
return m._parameters.items()
else:
return dict()
named_parameters = module._named_members(get_members_fn=get_members_fn)
for name, param in named_parameters:
yield param
def get_bn_parameters(module):
return get_parameters_from_cls(module, BN_CLS)
def get_ln_parameters(module):
return get_parameters_from_cls(module, nn.LayerNorm)
def get_norm_parameters(module):
return get_parameters_from_cls(module, (nn.LayerNorm, *BN_CLS))
def get_bias_parameters(module, exclude_func=None):
excluded_parameters = set()
if exclude_func is not None:
for param in exclude_func(module):
excluded_parameters.add(param)
for name, param in module.named_parameters():
if param not in excluded_parameters and 'bias' in name:
yield param
def get_norm_bias_parameters(module):
for param in get_norm_parameters(module):
yield param
for param in get_bias_parameters(module, exclude_func=get_norm_parameters):
yield param
def get_common_parameters(module, exclude_func=None):
excluded_parameters = set()
if exclude_func is not None:
for param in exclude_func(module):
excluded_parameters.add(param)
for name, param in module.named_parameters():
if param not in excluded_parameters:
yield param