Skip to content

why the speed of any loader in ["pytorch", "dali", "dali_proxy"] is the same in imagenet val dataset ? #5964

@BiaoBiaoLi

Description

@BiaoBiaoLi

Describe the question.

Thanks for your work !!
I meet a problem, could you please help me ?
I use the resnet example in pytorch case, i test the three mode of ["pytorch", "dali", "dali_proxy"] for imagenet val dataset. But i get the same speed. How can i imporve the dataloader speed, thanks you.
I use the command below, and bs=256, works_num = 16, and record val time like this
if args.evaluate: start_time = time.time() validate(val_loader, model, criterion) print(args.data_loader, " eval spend time ", time.time() - start_time) return

  1. python resnet50_dali_main_lastest.py -a resnet50 --pretrained -e /cache/ILSVRC_2012/ --data_loader dali
    the log is below:
    Test: [0/196] Time 2.897 (2.897) Speed 88.374 (88.374) Loss 0.4836 (0.4836) Prec@1 85.938 (85.938) Prec@5 97.656 (97.656)
    Test: [10/196] Time 0.254 (0.492) Speed 1006.163 (520.375) Loss 0.9584 (0.6698) Prec@1 77.734 (82.919) Prec@5 92.969 (95.526)
    Test: [20/196] Time 0.252 (0.377) Speed 1014.990 (678.508) Loss 0.7611 (0.6834) Prec@1 86.328 (82.906) Prec@5 92.188 (95.387)
    Test: [30/196] Time 0.248 (0.338) Speed 1034.300 (756.694) Loss 0.7936 (0.6397) Prec@1 80.469 (84.098) Prec@5 95.312 (95.779)
    Test: [40/196] Time 0.248 (0.317) Speed 1034.085 (806.879) Loss 0.6592 (0.6858) Prec@1 82.031 (82.346) Prec@5 96.094 (95.741)
    Test: [50/196] Time 0.247 (0.304) Speed 1037.235 (841.413) Loss 0.4785 (0.6842) Prec@1 88.672 (82.169) Prec@5 97.656 (95.856)
    Test: [60/196] Time 0.247 (0.296) Speed 1034.767 (864.790) Loss 0.9261 (0.6984) Prec@1 76.172 (81.737) Prec@5 95.703 (95.927)
    Test: [70/196] Time 0.237 (0.290) Speed 1081.450 (881.430) Loss 0.7178 (0.6850) Prec@1 78.906 (81.976) Prec@5 96.484 (96.044)
    Test: [80/196] Time 0.250 (0.285) Speed 1022.285 (897.980) Loss 1.4714 (0.7118) Prec@1 62.109 (81.481) Prec@5 88.281 (95.727)
    Test: [90/196] Time 0.252 (0.281) Speed 1014.157 (910.917) Loss 1.8526 (0.7604) Prec@1 57.031 (80.426) Prec@5 85.547 (95.240)
    Test: [100/196] Time 0.247 (0.278) Speed 1035.940 (921.633) Loss 1.1296 (0.8124) Prec@1 67.578 (79.247) Prec@5 91.797 (94.663)
    Test: [110/196] Time 0.248 (0.275) Speed 1030.350 (930.323) Loss 0.8505 (0.8367) Prec@1 76.953 (78.709) Prec@5 94.531 (94.436)
    Test: [120/196] Time 0.240 (0.273) Speed 1065.760 (937.727) Loss 1.2352 (0.8546) Prec@1 70.703 (78.416) Prec@5 87.891 (94.131)
    Test: [130/196] Time 0.244 (0.271) Speed 1048.608 (944.158) Loss 0.6998 (0.8883) Prec@1 80.859 (77.582) Prec@5 96.484 (93.825)
    Test: [140/196] Time 0.248 (0.270) Speed 1031.553 (949.805) Loss 1.0393 (0.9064) Prec@1 74.609 (77.261) Prec@5 92.188 (93.628)
    Test: [150/196] Time 0.245 (0.268) Speed 1044.525 (954.837) Loss 1.0463 (0.9237) Prec@1 75.391 (76.932) Prec@5 89.844 (93.375)
    Test: [160/196] Time 0.250 (0.267) Speed 1025.097 (958.618) Loss 0.6940 (0.9378) Prec@1 85.938 (76.650) Prec@5 94.141 (93.163)
    Test: [170/196] Time 0.250 (0.266) Speed 1025.405 (961.998) Loss 0.6075 (0.9544) Prec@1 81.641 (76.222) Prec@5 98.047 (92.998)
    Test: [180/196] Time 0.253 (0.265) Speed 1012.474 (965.348) Loss 1.2973 (0.9702) Prec@1 69.531 (75.898) Prec@5 92.188 (92.865)
    Test: [190/196] Time 0.259 (0.265) Speed 988.305 (967.457) Loss 1.1865 (0.9687) Prec@1 66.797 (75.881) Prec@5 94.922 (92.893)
  • Prec@1 75.990 Prec@5 92.922
    dali eval spend time 52.22550344467163
  1. python resnet50_dali_main_lastest.py -a resnet50 --pretrained -e /cache/ILSVRC_2012/ --data_loader pytorch
    the log is below
    Test: [0/196] Time 10.827 (10.827) Speed 23.646 (23.646) Loss 0.4835 (0.4835) Prec@1 85.938 (85.938) Prec@5 98.047 (98.047)
    Test: [10/196] Time 0.215 (1.180) Speed 1188.818 (216.867) Loss 0.9643 (0.6704) Prec@1 78.125 (83.132) Prec@5 93.359 (95.703)
    Test: [20/196] Time 0.216 (0.721) Speed 1187.119 (355.045) Loss 0.7694 (0.6839) Prec@1 85.938 (82.999) Prec@5 92.188 (95.406)
    Test: [30/196] Time 0.215 (0.558) Speed 1188.629 (458.804) Loss 0.7975 (0.6403) Prec@1 81.641 (84.236) Prec@5 94.531 (95.741)
    Test: [40/196] Time 0.216 (0.475) Speed 1186.597 (538.887) Loss 0.6590 (0.6857) Prec@1 82.031 (82.584) Prec@5 97.656 (95.770)
    Test: [50/196] Time 0.216 (0.424) Speed 1186.812 (603.153) Loss 0.4781 (0.6839) Prec@1 89.453 (82.338) Prec@5 97.266 (95.918)
    Test: [60/196] Time 0.216 (0.391) Speed 1185.402 (654.856) Loss 0.9100 (0.6974) Prec@1 76.562 (81.865) Prec@5 94.922 (95.959)
    Test: [70/196] Time 0.221 (0.367) Speed 1158.536 (698.258) Loss 0.7313 (0.6844) Prec@1 78.906 (82.130) Prec@5 96.094 (96.072)
    Test: [80/196] Time 0.216 (0.348) Speed 1185.936 (735.491) Loss 1.4632 (0.7108) Prec@1 62.109 (81.573) Prec@5 87.891 (95.737)
    Test: [90/196] Time 0.216 (0.334) Speed 1187.928 (766.888) Loss 1.8344 (0.7582) Prec@1 55.859 (80.473) Prec@5 87.109 (95.252)
    Test: [100/196] Time 0.216 (0.322) Speed 1185.767 (794.051) Loss 1.1352 (0.8107) Prec@1 67.188 (79.339) Prec@5 91.406 (94.678)
    Test: [110/196] Time 0.221 (0.313) Speed 1160.339 (818.188) Loss 0.8528 (0.8348) Prec@1 78.125 (78.832) Prec@5 94.141 (94.429)
    Test: [120/196] Time 0.216 (0.305) Speed 1186.894 (839.556) Loss 1.2527 (0.8528) Prec@1 70.312 (78.503) Prec@5 85.938 (94.105)
    Test: [130/196] Time 0.216 (0.298) Speed 1186.192 (858.536) Loss 0.7043 (0.8863) Prec@1 81.641 (77.630) Prec@5 96.094 (93.792)
    Test: [140/196] Time 0.216 (0.292) Speed 1186.622 (875.715) Loss 1.0336 (0.9043) Prec@1 75.391 (77.313) Prec@5 91.406 (93.578)
    Test: [150/196] Time 0.216 (0.287) Speed 1187.178 (891.155) Loss 1.0479 (0.9217) Prec@1 75.000 (77.005) Prec@5 89.844 (93.328)
    Test: [160/196] Time 0.216 (0.283) Speed 1187.820 (904.935) Loss 0.7137 (0.9361) Prec@1 86.328 (76.732) Prec@5 94.531 (93.107)
    Test: [170/196] Time 0.215 (0.279) Speed 1188.772 (917.694) Loss 0.6185 (0.9530) Prec@1 83.984 (76.341) Prec@5 97.656 (92.941)
    Test: [180/196] Time 0.216 (0.275) Speed 1187.355 (929.386) Loss 1.2993 (0.9690) Prec@1 67.969 (76.023) Prec@5 92.578 (92.803)
    Test: [190/196] Time 0.215 (0.272) Speed 1188.892 (940.125) Loss 1.1717 (0.9671) Prec@1 69.531 (76.043) Prec@5 96.094 (92.834)
  • Prec@1 76.146 Prec@5 92.872
    pytorch eval spend time 53.391836643218994
  1. python resnet50_dali_main_lastest.py -a resnet50 --pretrained -e /cache/ILSVRC_2012/ --data_loader dali_proxy , the log is below
    Test: [0/196] Time 6.960 (6.960) Speed 36.779 (36.779) Loss 0.4836 (0.4836) Prec@1 85.938 (85.938) Prec@5 97.656 (97.656)
    Test: [10/196] Time 0.218 (0.829) Speed 1172.853 (308.770) Loss 0.9584 (0.6698) Prec@1 77.734 (82.919) Prec@5 92.969 (95.526)
    Test: [20/196] Time 0.220 (0.537) Speed 1165.981 (476.820) Loss 0.7611 (0.6834) Prec@1 86.328 (82.906) Prec@5 92.188 (95.387)
    Test: [30/196] Time 0.216 (0.433) Speed 1187.152 (590.872) Loss 0.7936 (0.6397) Prec@1 80.469 (84.098) Prec@5 95.312 (95.779)
    Test: [40/196] Time 0.254 (0.384) Speed 1008.628 (666.967) Loss 0.6592 (0.6858) Prec@1 82.031 (82.346) Prec@5 96.094 (95.741)
    Test: [50/196] Time 0.250 (0.358) Speed 1025.921 (715.786) Loss 0.4785 (0.6842) Prec@1 88.672 (82.169) Prec@5 97.656 (95.856)
    Test: [60/196] Time 0.254 (0.340) Speed 1009.215 (752.921) Loss 0.9261 (0.6984) Prec@1 76.172 (81.737) Prec@5 95.703 (95.927)
    Test: [70/196] Time 0.245 (0.328) Speed 1043.773 (781.475) Loss 0.7178 (0.6850) Prec@1 78.906 (81.976) Prec@5 96.484 (96.044)
    Test: [80/196] Time 0.244 (0.319) Speed 1050.082 (803.077) Loss 1.4714 (0.7118) Prec@1 62.109 (81.481) Prec@5 88.281 (95.727)
    Test: [90/196] Time 0.266 (0.311) Speed 961.770 (822.401) Loss 1.8526 (0.7604) Prec@1 57.031 (80.426) Prec@5 85.547 (95.240)
    Test: [100/196] Time 0.246 (0.305) Speed 1042.286 (839.548) Loss 1.1296 (0.8124) Prec@1 67.578 (79.247) Prec@5 91.797 (94.663)
    Test: [110/196] Time 0.250 (0.300) Speed 1022.187 (853.296) Loss 0.8505 (0.8367) Prec@1 76.953 (78.709) Prec@5 94.531 (94.436)
    Test: [120/196] Time 0.246 (0.296) Speed 1038.699 (864.750) Loss 1.2352 (0.8546) Prec@1 70.703 (78.416) Prec@5 87.891 (94.131)
    Test: [130/196] Time 0.248 (0.292) Speed 1032.094 (875.422) Loss 0.6998 (0.8883) Prec@1 80.859 (77.582) Prec@5 96.484 (93.825)
    Test: [140/196] Time 0.248 (0.289) Speed 1033.510 (884.785) Loss 1.0393 (0.9064) Prec@1 74.609 (77.261) Prec@5 92.188 (93.628)
    Test: [150/196] Time 0.246 (0.287) Speed 1040.358 (893.269) Loss 1.0463 (0.9237) Prec@1 75.391 (76.932) Prec@5 89.844 (93.375)
    Test: [160/196] Time 0.248 (0.284) Speed 1030.435 (900.244) Loss 0.6940 (0.9378) Prec@1 85.938 (76.650) Prec@5 94.141 (93.163)
    Test: [170/196] Time 0.247 (0.282) Speed 1035.776 (906.897) Loss 0.6075 (0.9544) Prec@1 81.641 (76.222) Prec@5 98.047 (92.998)
    Test: [180/196] Time 0.248 (0.280) Speed 1030.365 (913.106) Loss 1.2973 (0.9702) Prec@1 69.531 (75.898) Prec@5 92.188 (92.865)
    Test: [190/196] Time 0.257 (0.279) Speed 994.746 (917.857) Loss 1.1865 (0.9687) Prec@1 66.797 (75.881) Prec@5 94.922 (92.893)
  • Prec@1 75.990 Prec@5 92.922
    dali_proxy eval spend time 54.75585222244263

Check for duplicates

  • I have searched the open bugs/issues and have found no duplicates for this bug report

Metadata

Metadata

Assignees

Labels

questionFurther information is requested

Type

No type

Projects

No projects

Milestone

No milestone

Relationships

None yet

Development

No branches or pull requests

Issue actions