-
Notifications
You must be signed in to change notification settings - Fork 644
Open
Labels
questionFurther information is requestedFurther information is requested
Description
Describe the question.
Thanks for your work !!
I meet a problem, could you please help me ?
I use the resnet example in pytorch case, i test the three mode of ["pytorch", "dali", "dali_proxy"] for imagenet val dataset. But i get the same speed. How can i imporve the dataloader speed, thanks you.
I use the command below, and bs=256, works_num = 16, and record val time like this
if args.evaluate: start_time = time.time() validate(val_loader, model, criterion) print(args.data_loader, " eval spend time ", time.time() - start_time) return
python resnet50_dali_main_lastest.py -a resnet50 --pretrained -e /cache/ILSVRC_2012/ --data_loader dali
the log is below:
Test: [0/196] Time 2.897 (2.897) Speed 88.374 (88.374) Loss 0.4836 (0.4836) Prec@1 85.938 (85.938) Prec@5 97.656 (97.656)
Test: [10/196] Time 0.254 (0.492) Speed 1006.163 (520.375) Loss 0.9584 (0.6698) Prec@1 77.734 (82.919) Prec@5 92.969 (95.526)
Test: [20/196] Time 0.252 (0.377) Speed 1014.990 (678.508) Loss 0.7611 (0.6834) Prec@1 86.328 (82.906) Prec@5 92.188 (95.387)
Test: [30/196] Time 0.248 (0.338) Speed 1034.300 (756.694) Loss 0.7936 (0.6397) Prec@1 80.469 (84.098) Prec@5 95.312 (95.779)
Test: [40/196] Time 0.248 (0.317) Speed 1034.085 (806.879) Loss 0.6592 (0.6858) Prec@1 82.031 (82.346) Prec@5 96.094 (95.741)
Test: [50/196] Time 0.247 (0.304) Speed 1037.235 (841.413) Loss 0.4785 (0.6842) Prec@1 88.672 (82.169) Prec@5 97.656 (95.856)
Test: [60/196] Time 0.247 (0.296) Speed 1034.767 (864.790) Loss 0.9261 (0.6984) Prec@1 76.172 (81.737) Prec@5 95.703 (95.927)
Test: [70/196] Time 0.237 (0.290) Speed 1081.450 (881.430) Loss 0.7178 (0.6850) Prec@1 78.906 (81.976) Prec@5 96.484 (96.044)
Test: [80/196] Time 0.250 (0.285) Speed 1022.285 (897.980) Loss 1.4714 (0.7118) Prec@1 62.109 (81.481) Prec@5 88.281 (95.727)
Test: [90/196] Time 0.252 (0.281) Speed 1014.157 (910.917) Loss 1.8526 (0.7604) Prec@1 57.031 (80.426) Prec@5 85.547 (95.240)
Test: [100/196] Time 0.247 (0.278) Speed 1035.940 (921.633) Loss 1.1296 (0.8124) Prec@1 67.578 (79.247) Prec@5 91.797 (94.663)
Test: [110/196] Time 0.248 (0.275) Speed 1030.350 (930.323) Loss 0.8505 (0.8367) Prec@1 76.953 (78.709) Prec@5 94.531 (94.436)
Test: [120/196] Time 0.240 (0.273) Speed 1065.760 (937.727) Loss 1.2352 (0.8546) Prec@1 70.703 (78.416) Prec@5 87.891 (94.131)
Test: [130/196] Time 0.244 (0.271) Speed 1048.608 (944.158) Loss 0.6998 (0.8883) Prec@1 80.859 (77.582) Prec@5 96.484 (93.825)
Test: [140/196] Time 0.248 (0.270) Speed 1031.553 (949.805) Loss 1.0393 (0.9064) Prec@1 74.609 (77.261) Prec@5 92.188 (93.628)
Test: [150/196] Time 0.245 (0.268) Speed 1044.525 (954.837) Loss 1.0463 (0.9237) Prec@1 75.391 (76.932) Prec@5 89.844 (93.375)
Test: [160/196] Time 0.250 (0.267) Speed 1025.097 (958.618) Loss 0.6940 (0.9378) Prec@1 85.938 (76.650) Prec@5 94.141 (93.163)
Test: [170/196] Time 0.250 (0.266) Speed 1025.405 (961.998) Loss 0.6075 (0.9544) Prec@1 81.641 (76.222) Prec@5 98.047 (92.998)
Test: [180/196] Time 0.253 (0.265) Speed 1012.474 (965.348) Loss 1.2973 (0.9702) Prec@1 69.531 (75.898) Prec@5 92.188 (92.865)
Test: [190/196] Time 0.259 (0.265) Speed 988.305 (967.457) Loss 1.1865 (0.9687) Prec@1 66.797 (75.881) Prec@5 94.922 (92.893)
- Prec@1 75.990 Prec@5 92.922
dali eval spend time 52.22550344467163
python resnet50_dali_main_lastest.py -a resnet50 --pretrained -e /cache/ILSVRC_2012/ --data_loader pytorch
the log is below
Test: [0/196] Time 10.827 (10.827) Speed 23.646 (23.646) Loss 0.4835 (0.4835) Prec@1 85.938 (85.938) Prec@5 98.047 (98.047)
Test: [10/196] Time 0.215 (1.180) Speed 1188.818 (216.867) Loss 0.9643 (0.6704) Prec@1 78.125 (83.132) Prec@5 93.359 (95.703)
Test: [20/196] Time 0.216 (0.721) Speed 1187.119 (355.045) Loss 0.7694 (0.6839) Prec@1 85.938 (82.999) Prec@5 92.188 (95.406)
Test: [30/196] Time 0.215 (0.558) Speed 1188.629 (458.804) Loss 0.7975 (0.6403) Prec@1 81.641 (84.236) Prec@5 94.531 (95.741)
Test: [40/196] Time 0.216 (0.475) Speed 1186.597 (538.887) Loss 0.6590 (0.6857) Prec@1 82.031 (82.584) Prec@5 97.656 (95.770)
Test: [50/196] Time 0.216 (0.424) Speed 1186.812 (603.153) Loss 0.4781 (0.6839) Prec@1 89.453 (82.338) Prec@5 97.266 (95.918)
Test: [60/196] Time 0.216 (0.391) Speed 1185.402 (654.856) Loss 0.9100 (0.6974) Prec@1 76.562 (81.865) Prec@5 94.922 (95.959)
Test: [70/196] Time 0.221 (0.367) Speed 1158.536 (698.258) Loss 0.7313 (0.6844) Prec@1 78.906 (82.130) Prec@5 96.094 (96.072)
Test: [80/196] Time 0.216 (0.348) Speed 1185.936 (735.491) Loss 1.4632 (0.7108) Prec@1 62.109 (81.573) Prec@5 87.891 (95.737)
Test: [90/196] Time 0.216 (0.334) Speed 1187.928 (766.888) Loss 1.8344 (0.7582) Prec@1 55.859 (80.473) Prec@5 87.109 (95.252)
Test: [100/196] Time 0.216 (0.322) Speed 1185.767 (794.051) Loss 1.1352 (0.8107) Prec@1 67.188 (79.339) Prec@5 91.406 (94.678)
Test: [110/196] Time 0.221 (0.313) Speed 1160.339 (818.188) Loss 0.8528 (0.8348) Prec@1 78.125 (78.832) Prec@5 94.141 (94.429)
Test: [120/196] Time 0.216 (0.305) Speed 1186.894 (839.556) Loss 1.2527 (0.8528) Prec@1 70.312 (78.503) Prec@5 85.938 (94.105)
Test: [130/196] Time 0.216 (0.298) Speed 1186.192 (858.536) Loss 0.7043 (0.8863) Prec@1 81.641 (77.630) Prec@5 96.094 (93.792)
Test: [140/196] Time 0.216 (0.292) Speed 1186.622 (875.715) Loss 1.0336 (0.9043) Prec@1 75.391 (77.313) Prec@5 91.406 (93.578)
Test: [150/196] Time 0.216 (0.287) Speed 1187.178 (891.155) Loss 1.0479 (0.9217) Prec@1 75.000 (77.005) Prec@5 89.844 (93.328)
Test: [160/196] Time 0.216 (0.283) Speed 1187.820 (904.935) Loss 0.7137 (0.9361) Prec@1 86.328 (76.732) Prec@5 94.531 (93.107)
Test: [170/196] Time 0.215 (0.279) Speed 1188.772 (917.694) Loss 0.6185 (0.9530) Prec@1 83.984 (76.341) Prec@5 97.656 (92.941)
Test: [180/196] Time 0.216 (0.275) Speed 1187.355 (929.386) Loss 1.2993 (0.9690) Prec@1 67.969 (76.023) Prec@5 92.578 (92.803)
Test: [190/196] Time 0.215 (0.272) Speed 1188.892 (940.125) Loss 1.1717 (0.9671) Prec@1 69.531 (76.043) Prec@5 96.094 (92.834)
- Prec@1 76.146 Prec@5 92.872
pytorch eval spend time 53.391836643218994
python resnet50_dali_main_lastest.py -a resnet50 --pretrained -e /cache/ILSVRC_2012/ --data_loader dali_proxy
, the log is below
Test: [0/196] Time 6.960 (6.960) Speed 36.779 (36.779) Loss 0.4836 (0.4836) Prec@1 85.938 (85.938) Prec@5 97.656 (97.656)
Test: [10/196] Time 0.218 (0.829) Speed 1172.853 (308.770) Loss 0.9584 (0.6698) Prec@1 77.734 (82.919) Prec@5 92.969 (95.526)
Test: [20/196] Time 0.220 (0.537) Speed 1165.981 (476.820) Loss 0.7611 (0.6834) Prec@1 86.328 (82.906) Prec@5 92.188 (95.387)
Test: [30/196] Time 0.216 (0.433) Speed 1187.152 (590.872) Loss 0.7936 (0.6397) Prec@1 80.469 (84.098) Prec@5 95.312 (95.779)
Test: [40/196] Time 0.254 (0.384) Speed 1008.628 (666.967) Loss 0.6592 (0.6858) Prec@1 82.031 (82.346) Prec@5 96.094 (95.741)
Test: [50/196] Time 0.250 (0.358) Speed 1025.921 (715.786) Loss 0.4785 (0.6842) Prec@1 88.672 (82.169) Prec@5 97.656 (95.856)
Test: [60/196] Time 0.254 (0.340) Speed 1009.215 (752.921) Loss 0.9261 (0.6984) Prec@1 76.172 (81.737) Prec@5 95.703 (95.927)
Test: [70/196] Time 0.245 (0.328) Speed 1043.773 (781.475) Loss 0.7178 (0.6850) Prec@1 78.906 (81.976) Prec@5 96.484 (96.044)
Test: [80/196] Time 0.244 (0.319) Speed 1050.082 (803.077) Loss 1.4714 (0.7118) Prec@1 62.109 (81.481) Prec@5 88.281 (95.727)
Test: [90/196] Time 0.266 (0.311) Speed 961.770 (822.401) Loss 1.8526 (0.7604) Prec@1 57.031 (80.426) Prec@5 85.547 (95.240)
Test: [100/196] Time 0.246 (0.305) Speed 1042.286 (839.548) Loss 1.1296 (0.8124) Prec@1 67.578 (79.247) Prec@5 91.797 (94.663)
Test: [110/196] Time 0.250 (0.300) Speed 1022.187 (853.296) Loss 0.8505 (0.8367) Prec@1 76.953 (78.709) Prec@5 94.531 (94.436)
Test: [120/196] Time 0.246 (0.296) Speed 1038.699 (864.750) Loss 1.2352 (0.8546) Prec@1 70.703 (78.416) Prec@5 87.891 (94.131)
Test: [130/196] Time 0.248 (0.292) Speed 1032.094 (875.422) Loss 0.6998 (0.8883) Prec@1 80.859 (77.582) Prec@5 96.484 (93.825)
Test: [140/196] Time 0.248 (0.289) Speed 1033.510 (884.785) Loss 1.0393 (0.9064) Prec@1 74.609 (77.261) Prec@5 92.188 (93.628)
Test: [150/196] Time 0.246 (0.287) Speed 1040.358 (893.269) Loss 1.0463 (0.9237) Prec@1 75.391 (76.932) Prec@5 89.844 (93.375)
Test: [160/196] Time 0.248 (0.284) Speed 1030.435 (900.244) Loss 0.6940 (0.9378) Prec@1 85.938 (76.650) Prec@5 94.141 (93.163)
Test: [170/196] Time 0.247 (0.282) Speed 1035.776 (906.897) Loss 0.6075 (0.9544) Prec@1 81.641 (76.222) Prec@5 98.047 (92.998)
Test: [180/196] Time 0.248 (0.280) Speed 1030.365 (913.106) Loss 1.2973 (0.9702) Prec@1 69.531 (75.898) Prec@5 92.188 (92.865)
Test: [190/196] Time 0.257 (0.279) Speed 994.746 (917.857) Loss 1.1865 (0.9687) Prec@1 66.797 (75.881) Prec@5 94.922 (92.893)
- Prec@1 75.990 Prec@5 92.922
dali_proxy eval spend time 54.75585222244263
Check for duplicates
- I have searched the open bugs/issues and have found no duplicates for this bug report
Metadata
Metadata
Assignees
Labels
questionFurther information is requestedFurther information is requested