-
Notifications
You must be signed in to change notification settings - Fork 1.9k
/
Copy pathbatchCUBLAS.cpp
665 lines (557 loc) · 21.1 KB
/
batchCUBLAS.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of NVIDIA CORPORATION nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* This example demonstrates how to get better performance by
* batching CUBLAS calls with the use of using streams
*/
#include <ctype.h>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#if defined(WIN32) || defined(_WIN32) || defined(WIN64) || defined(_WIN64)
#include <float.h>
#endif
/* Using updated (v2) interfaces to cublas and cusparse */
#include <cublas_v2.h>
#include <cuda_runtime.h>
// Utilities and system includes
#include <helper_cuda.h>
#include "batchCUBLAS.h"
const char *sSDKname = "batchCUBLAS";
//==============================================================================
// Device information utilities
//==============================================================================
#if defined(__cplusplus)
extern "C" {
#endif /* __cplusplus */
int getDeviceVersion(void) {
int device;
struct cudaDeviceProp properties;
if (cudaGetDevice(&device) != cudaSuccess) {
printf("failed to get device\n");
return 0;
}
if (cudaGetDeviceProperties(&properties, device) != cudaSuccess) {
printf("failed to get properties\n");
return 0;
}
return properties.major * 100 + properties.minor * 10;
}
size_t getDeviceMemory(void) {
struct cudaDeviceProp properties;
int device;
if (cudaGetDevice(&device) != cudaSuccess) {
return 0;
}
if (cudaGetDeviceProperties(&properties, device) != cudaSuccess) {
return 0;
}
return properties.totalGlobalMem;
}
#if defined(__cplusplus)
}
#endif /* __cplusplus */
//==============================================================================
// random utilities
//==============================================================================
template <typename T_ELEM>
void fillupMatrix(T_ELEM *A, int lda, int rows, int cols, int seed = 0);
template <typename T_ELEM>
void fillupMatrix(T_ELEM *A, int lda, int rows, int cols, int seed) {
for (int j = 0; j < cols; j++) {
for (int i = 0; i < rows; i++) {
A[i + lda * j] = cuGet<T_ELEM>(
((double)(((lda * i + j + seed) % 253) + 1)) / 256.0,
((double)((((cols * i + j) + 123 + seed) % 253) + 1)) / 256.0);
}
}
}
/* Explicit instantiation */
template void fillupMatrix<float>(float *A, int lda, int rows, int cols,
int seed);
template void fillupMatrix<double>(double *A, int lda, int rows, int cols,
int seed);
/* For debugging */
void printCuType(const char *str, float A) {
fprintf(stdout, "%s (0x%08x, %g)", str, floatAsUInt(A), A);
}
void printCuType(const char *str, double A) {
fprintf(stdout, "%s (0x%016llx, %g)", str, doubleAsULL(A), A);
}
//==============================================================================
// defines and structures
//==============================================================================
#define CUBLAS_SGEMM_MAX_ULP_ERR (.3)
#define CUBLAS_DGEMM_MAX_ULP_ERR (1.e-3)
#define CUBLAS_SGEMM_MAX_RELATIVE_ERR (6.e-6)
#define CUBLAS_DGEMM_MAX_RELATIVE_ERR (0.0)
#define CUBLAS_GEMM_TEST_COUNT (30)
#define BENCH_MATRIX_M (128)
#define BENCH_MATRIX_K (128)
#define BENCH_MATRIX_N (128)
#define CLEANUP() \
do { \
if (A) free(A); \
if (B) free(B); \
if (C) free(C); \
for (int i = 0; i < opts.N; ++i) { \
if (devPtrA[i]) cudaFree(devPtrA[i]); \
if (devPtrB[i]) cudaFree(devPtrB[i]); \
if (devPtrC[i]) cudaFree(devPtrC[i]); \
} \
if (devPtrA) free(devPtrA); \
if (devPtrB) free(devPtrB); \
if (devPtrC) free(devPtrC); \
if (devPtrA_dev) cudaFree(devPtrA_dev); \
if (devPtrB_dev) cudaFree(devPtrB_dev); \
if (devPtrC_dev) cudaFree(devPtrC_dev); \
fflush(stdout); \
} while (0)
enum testMethod { tmRegular, tmStream, tmBatched };
struct gemmOpts {
int m;
int n;
int k;
testMethod test_method;
char *elem_type;
int N; // number of multiplications
};
template <typename T_ELEM>
struct gemmTestParams {
cublasOperation_t transa;
cublasOperation_t transb;
int m;
int n;
int k;
T_ELEM alpha;
T_ELEM beta;
};
//==============================================================================
// template wrappers for cuda functions
//==============================================================================
static inline cublasStatus_t cublasXgemm(cublasHandle_t handle,
cublasOperation_t transa,
cublasOperation_t transb, int m, int n,
int k, float *alpha, const float *A,
int lda, float *B, int ldb,
float *beta, float *C, int ldc) {
return cublasSgemm(handle, transa, transb, m, n, k, alpha, A, lda, B, ldb,
beta, C, ldc);
}
static inline cublasStatus_t cublasXgemm(cublasHandle_t handle,
cublasOperation_t transa,
cublasOperation_t transb, int m, int n,
int k, double *alpha, const double *A,
int lda, double *B, int ldb,
double *beta, double *C, int ldc) {
return cublasDgemm(handle, transa, transb, m, n, k, alpha, A, lda, B, ldb,
beta, C, ldc);
}
static inline cublasStatus_t cublasXgemmBatched(
cublasHandle_t handle, cublasOperation_t transa, cublasOperation_t transb,
int m, int n, int k, float *alpha, const float *Aarray[], int lda,
const float *Barray[], int ldb, float *beta, float *Carray[], int ldc,
int batchCount) {
#if CUDART_VERSION >= 4010
return cublasSgemmBatched(handle, transa, transb, m, n, k, alpha, Aarray, lda,
Barray, ldb, beta, Carray, ldc, batchCount);
#else
return CUBLAS_STATUS_SUCCESS;
#endif
}
static inline cublasStatus_t cublasXgemmBatched(
cublasHandle_t handle, cublasOperation_t transa, cublasOperation_t transb,
int m, int n, int k, double *alpha, const double *Aarray[], int lda,
const double *Barray[], int ldb, double *beta, double *Carray[], int ldc,
int batchCount) {
#if CUDART_VERSION >= 4010
return cublasDgemmBatched(handle, transa, transb, m, n, k, alpha, Aarray, lda,
Barray, ldb, beta, Carray, ldc, batchCount);
#else
return CUBLAS_STATUS_SUCCESS;
#endif
}
//==============================================================================
// Primary Application code
//==============================================================================
static int processArgs(int argc, char *argv[], struct gemmOpts *opts) {
int error = 0;
int oldError;
memset(opts, 0, sizeof(*opts));
static char default_type[] = "d"; // default double
opts->elem_type = default_type;
opts->N = 10;
while (argc) {
oldError = error;
if (*argv[0] == SWITCH_CHAR) {
switch (*(argv[0] + 1)) {
case 'm':
opts->m = (int)atol(argv[0] + 2);
break;
case 'n':
opts->n = (int)atol(argv[0] + 2);
break;
case 'k':
opts->k = (int)atol(argv[0] + 2);
break;
case 'N':
opts->N = (int)atol(argv[0] + 2);
break;
default:
break;
}
}
if (error > oldError) {
fprintf(stderr, "Invalid switch '%c%s'\n", SWITCH_CHAR, argv[0] + 1);
}
argc -= 1;
argv++;
}
return error;
}
template <typename T_ELEM>
static int TESTGEN(gemm)(const struct gemmOpts *opts, int matrixM, int matrixN,
int matrixK, int &numTests,
struct gemmTestParams<T_ELEM> *params) {
static T_ELEM alpha[] = {cuGet<T_ELEM>(0, 0), cuGet<T_ELEM>(-1, -1),
cuGet<T_ELEM>(1, -2), cuGet<T_ELEM>(2, -1),
cuGet<T_ELEM>(0, -3)};
static T_ELEM beta[] = {cuGet<T_ELEM>(0, 0), cuGet<T_ELEM>(-1, -1),
cuGet<T_ELEM>(1, -2), cuGet<T_ELEM>(2, -1),
cuGet<T_ELEM>(0, -3)};
#define NBR_ALPHAS (sizeof(alpha) / sizeof(alpha[0]))
#define NBR_BETAS (sizeof(beta) / sizeof(beta[0]))
static T_ELEM theAlpha;
static T_ELEM theBeta;
static int state;
static int m;
static int n;
static int k;
if (numTests-- <= 0) {
return -1;
}
theAlpha = alpha[cuRand() % NBR_ALPHAS];
theBeta = beta[cuRand() % NBR_BETAS];
params->transa = CUBLAS_OP_N;
params->transb = CUBLAS_OP_N;
m = matrixM;
n = matrixN;
k = matrixK;
params->m = m;
params->n = n;
params->k = k;
params->alpha = theAlpha;
params->beta = theBeta;
printf("#### args: ta=%d tb=%d m=%d n=%d k=%d ", (unsigned int)params->transa,
(unsigned int)params->transb, params->m, params->n, params->k);
printCuType(" alpha =", params->alpha);
printCuType(" beta=", params->beta);
printf("\n");
m = cuRand() % matrixM;
n = cuRand() % matrixN;
k = cuRand() % matrixK;
state = cuRand() % 9;
return 0;
}
template <typename T_ELEM>
void fillupMatrixDebug(T_ELEM *A, int lda, int rows, int cols) {
for (int j = 0; j < cols; j++) {
for (int i = 0; i < rows; i++) {
A[i + lda * j] = cuGet<T_ELEM>(i + j);
}
}
}
template <typename T_ELEM>
int test_gemm_loop(struct gemmOpts &opts, float err, double max_relative_error,
cublasHandle_t handle) {
struct gemmTestParams<T_ELEM> params;
cudaStream_t *streamArray = 0;
cublasStatus_t status1, status2, status3;
T_ELEM *A = NULL;
T_ELEM *B = NULL;
T_ELEM *C = NULL;
T_ELEM **devPtrA = 0;
T_ELEM **devPtrB = 0;
T_ELEM **devPtrC = 0;
T_ELEM **devPtrA_dev = NULL;
T_ELEM **devPtrB_dev = NULL;
T_ELEM **devPtrC_dev = NULL;
int matrixM, matrixN, matrixK;
int rowsA, rowsB, rowsC;
int colsA, colsB, colsC;
int matrixSizeA, matrixSizeB, matrixSizeC;
int errors;
double start, stop;
printf("Testing %cgemm\n", *opts.elem_type);
matrixM = (opts.m) ? opts.m : BENCH_MATRIX_M;
matrixN = (opts.n) ? opts.n : BENCH_MATRIX_N;
matrixK = (opts.k) ? opts.k : BENCH_MATRIX_K;
rowsA = imax(1, matrixM);
colsA = imax(1, matrixK);
rowsB = imax(1, matrixK);
colsB = imax(1, matrixN);
rowsC = imax(1, matrixM);
colsC = imax(1, matrixN);
matrixSizeA = rowsA * colsA;
matrixSizeB = rowsB * colsB;
matrixSizeC = rowsC * colsC;
devPtrA = (T_ELEM **)malloc(opts.N * sizeof(*devPtrA));
devPtrB = (T_ELEM **)malloc(opts.N * sizeof(*devPtrB));
devPtrC = (T_ELEM **)malloc(opts.N * sizeof(*devPtrC));
for (int i = 0; i < opts.N; i++) {
cudaError_t err1 =
cudaMalloc((void **)&devPtrA[i], matrixSizeA * sizeof(devPtrA[0][0]));
cudaError_t err2 =
cudaMalloc((void **)&devPtrB[i], matrixSizeB * sizeof(devPtrB[0][0]));
cudaError_t err3 =
cudaMalloc((void **)&devPtrC[i], matrixSizeC * sizeof(devPtrC[0][0]));
if ((err1 != cudaSuccess) || (err2 != cudaSuccess) ||
(err3 != cudaSuccess)) {
CLEANUP();
fprintf(stderr, "!!!! GPU memory allocation error\n");
return CUBLASTEST_FAILED;
}
}
// For batched processing we need those arrays on the device
if (opts.test_method == tmBatched) {
cudaError_t err1 =
cudaMalloc((void **)&devPtrA_dev, opts.N * sizeof(*devPtrA));
cudaError_t err2 =
cudaMalloc((void **)&devPtrB_dev, opts.N * sizeof(*devPtrB));
cudaError_t err3 =
cudaMalloc((void **)&devPtrC_dev, opts.N * sizeof(*devPtrC));
if ((err1 != cudaSuccess) || (err2 != cudaSuccess) ||
(err3 != cudaSuccess)) {
CLEANUP();
fprintf(stderr, "!!!! GPU memory allocation error\n");
return CUBLASTEST_FAILED;
}
err1 = cudaMemcpy(devPtrA_dev, devPtrA, opts.N * sizeof(*devPtrA),
cudaMemcpyHostToDevice);
err2 = cudaMemcpy(devPtrB_dev, devPtrB, opts.N * sizeof(*devPtrB),
cudaMemcpyHostToDevice);
err3 = cudaMemcpy(devPtrC_dev, devPtrC, opts.N * sizeof(*devPtrC),
cudaMemcpyHostToDevice);
if ((err1 != cudaSuccess) || (err2 != cudaSuccess) ||
(err3 != cudaSuccess)) {
CLEANUP();
fprintf(stderr, "!!!! cannot copy pointer array to device\n");
return CUBLASTEST_FAILED;
}
}
A = (T_ELEM *)malloc(matrixSizeA * sizeof(A[0]));
B = (T_ELEM *)malloc(matrixSizeB * sizeof(B[0]));
C = (T_ELEM *)malloc(matrixSizeC * sizeof(C[0]));
if ((!A) || (!B) || (!C)) {
CLEANUP();
fprintf(stderr, "!!!! system memory allocation error\n");
return CUBLASTEST_FAILED;
}
streamArray = (cudaStream_t *)malloc(opts.N * sizeof(cudaStream_t *));
for (int i = 0; i < opts.N; i++) {
if (opts.test_method == tmStream) {
cudaError_t cudaErr = cudaStreamCreate(&streamArray[i]);
if (cudaErr != cudaSuccess) {
CLEANUP();
fprintf(stderr, "!!!! cannot create stream\n");
return CUBLASTEST_FAILED;
}
} else {
streamArray[i] = 0;
}
}
errors = 0;
int numTests = 1;
while (TESTGEN(gemm)(&opts, matrixM, matrixN, matrixK, numTests, ¶ms) ==
0) {
printf("#### args: lda=%d ldb=%d ldc=%d\n", rowsA, rowsB, rowsC);
// fillup with Nan first (so lda padding is full on Nan)
memset(A, 0xFF, matrixSizeA * sizeof(A[0]));
fillupMatrixDebug(A, rowsA, params.m, params.k);
memset(B, 0xFF, matrixSizeB * sizeof(B[0]));
fillupMatrix(B, rowsB, params.k, params.n, 121);
if (!cuEqual(params.beta, cuGet<T_ELEM>(0))) {
fillupMatrix(C, rowsC, params.m, params.n);
} else {
/* fill with SNaNs to make sure ZGEMM doesn't access C */
memset(C, 0xFF, matrixSizeC * sizeof(C[0]));
}
double flopsCoef = 2.0;
for (int i = 0; i < opts.N; i++) {
status1 = cublasSetMatrix(rowsA, colsA, sizeof(A[0]), A, rowsA,
devPtrA[i], rowsA);
status2 = cublasSetMatrix(rowsB, colsB, sizeof(B[0]), B, rowsB,
devPtrB[i], rowsB);
status3 = cublasSetMatrix(rowsC, colsC, sizeof(C[0]), C, rowsC,
devPtrC[i], rowsC);
if ((status1 != CUBLAS_STATUS_SUCCESS) || (status2 != status1) ||
(status3 != status1)) {
CLEANUP();
fprintf(stderr, "!!!! GPU access error (write)\n");
return CUBLASTEST_FAILED;
}
}
start = second();
if (opts.test_method == tmBatched) {
cublasSetStream(handle, streamArray[0]);
status1 = cublasXgemmBatched(handle, params.transa, params.transb,
params.m, params.n, params.k, ¶ms.alpha,
(const T_ELEM **)devPtrA_dev, rowsA,
(const T_ELEM **)devPtrB_dev, rowsB,
¶ms.beta, devPtrC_dev, rowsC, opts.N);
if (status1 != CUBLAS_STATUS_SUCCESS) {
cudaError_t cudaStatus = cudaGetLastError();
CLEANUP();
fprintf(stderr,
"!!!! GPU program execution error : cublas Error=%d, cuda "
"Error=%d,(%s)\n",
status1, cudaStatus, cudaGetErrorString(cudaStatus));
return CUBLASTEST_FAILED;
}
} else {
for (int i = 0; i < opts.N; i++) {
cublasSetStream(handle, streamArray[i]);
status1 =
cublasXgemm(handle, params.transa, params.transb, params.m,
params.n, params.k, ¶ms.alpha, devPtrA[i], rowsA,
devPtrB[i], rowsB, ¶ms.beta, devPtrC[i], rowsC);
if (status1 != CUBLAS_STATUS_SUCCESS) {
cudaError_t cudaStatus = cudaGetLastError();
CLEANUP();
fprintf(stderr,
"!!!! GPU program execution error : cublas Error=%d, cuda "
"Error=%d,(%s)\n",
status1, cudaStatus, cudaGetErrorString(cudaStatus));
return CUBLASTEST_FAILED;
}
}
}
cudaError_t cudaStatus = cudaDeviceSynchronize();
if (cudaStatus != cudaSuccess) {
CLEANUP();
fprintf(stderr,
"!!!! GPU program execution error on cudaDeviceSynchronize : "
"cudaError=%d,(%s)\n",
cudaStatus, cudaGetErrorString(cudaStatus));
return CUBLASTEST_FAILED;
}
stop = second();
fprintf(stdout, "^^^^ elapsed = %10.8f sec GFLOPS=%g\n", (stop - start),
opts.N * (1e-9 * flopsCoef * params.m * params.n * params.k) /
(stop - start));
} // end while (TESTGEN..
CLEANUP();
fprintf(stdout, "@@@@ %cgemm test %s\n", *opts.elem_type,
errors ? "FAIL" : "OK");
return CUBLASTEST_PASSED;
}
int main(int argc, char *argv[]) {
struct gemmOpts opts;
int errors, nTimes, nTotalErrors = 0;
int status = CUBLASTEST_PASSED;
printf("%s Starting...\n\n", sSDKname);
int dev = findCudaDevice(argc, (const char **)argv);
if (dev == -1) {
return CUBLASTEST_FAILED;
}
errors = processArgs(argc, argv, &opts);
if (errors) {
fprintf(stdout,
"\n Usage: batchcublas [-mSIZE_M] [-nSIZE_N] [-kSIZE_N] "
"[-NSIZE_NUM_ITERATIONS] [-qatest] [-noprompt]\n");
return CUBLASTEST_FAILED;
}
cublasHandle_t handle;
if (cublasCreate(&handle) != CUBLAS_STATUS_SUCCESS) {
fprintf(stdout, "CUBLAS initialization failed!\n");
exit(EXIT_FAILURE);
}
// Run single kernels
fprintf(stdout, "\n ==== Running single kernels ==== \n\n");
nTimes = opts.N;
opts.N = 1;
*(opts.elem_type) = 's';
status = test_gemm_loop<float>(opts, (float)CUBLAS_SGEMM_MAX_ULP_ERR,
(double)CUBLAS_SGEMM_MAX_RELATIVE_ERR, handle);
// Run Double version
*(opts.elem_type) = 'd';
if (getDeviceVersion() < DEV_VER_DBL_SUPPORT) {
fprintf(stdout, "@@@@ dgemm test WAIVED due to lack of DP support\n");
exit(EXIT_WAIVED);
}
status =
test_gemm_loop<double>(opts, (float)CUBLAS_DGEMM_MAX_ULP_ERR,
(double)CUBLAS_DGEMM_MAX_RELATIVE_ERR, handle);
nTotalErrors += (status == CUBLASTEST_PASSED ? 0 : 1);
opts.N = nTimes;
// Run with and without streams and then batched. The batched functions are a
// feature new feature in 4.1
#if CUDART_VERSION >= 4010
for (int ii = 0; ii < 3; ii++) {
#else
for (int ii = 0; ii < 2; ii++) {
#endif
switch (ii) {
case 0:
opts.test_method = tmRegular;
fprintf(stdout, "\n ==== Running N=%d without streams ==== \n\n",
opts.N);
break;
case 1:
opts.test_method = tmStream;
fprintf(stdout, "\n ==== Running N=%d with streams ==== \n\n", opts.N);
break;
case 2:
opts.test_method = tmBatched;
fprintf(stdout, "\n ==== Running N=%d batched ==== \n\n", opts.N);
break;
}
// Run single version
*(opts.elem_type) = 's';
status =
test_gemm_loop<float>(opts, (float)CUBLAS_SGEMM_MAX_ULP_ERR,
(double)CUBLAS_SGEMM_MAX_RELATIVE_ERR, handle);
nTotalErrors += (status == CUBLASTEST_PASSED ? 0 : 1);
// Run Double version
*(opts.elem_type) = 'd';
// Test doesn't meet minSpec, will will wave the DP test
if (getDeviceVersion() < DEV_VER_DBL_SUPPORT) {
fprintf(stdout, "@@@@ dgemm test WAIVED due to lack of DP support\n");
exit(EXIT_WAIVED);
} else {
status =
test_gemm_loop<double>(opts, (float)CUBLAS_DGEMM_MAX_ULP_ERR,
(double)CUBLAS_DGEMM_MAX_RELATIVE_ERR, handle);
nTotalErrors += (status == CUBLASTEST_PASSED ? 0 : 1);
}
}
cublasDestroy(handle);
printf("\nTest Summary\n");
printf("%d error(s)\n", nTotalErrors);
exit(nTotalErrors == 0 ? EXIT_SUCCESS : EXIT_FAILURE);
}