-
Notifications
You must be signed in to change notification settings - Fork 1.9k
/
Copy pathoceanFFT_kernel.cu
159 lines (135 loc) · 6.45 KB
/
oceanFFT_kernel.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of NVIDIA CORPORATION nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
///////////////////////////////////////////////////////////////////////////////
#include <cufft.h>
#include <math_constants.h>
// Round a / b to nearest higher integer value
int cuda_iDivUp(int a, int b) { return (a + (b - 1)) / b; }
// complex math functions
__device__ float2 conjugate(float2 arg) { return make_float2(arg.x, -arg.y); }
__device__ float2 complex_exp(float arg) {
return make_float2(cosf(arg), sinf(arg));
}
__device__ float2 complex_add(float2 a, float2 b) {
return make_float2(a.x + b.x, a.y + b.y);
}
__device__ float2 complex_mult(float2 ab, float2 cd) {
return make_float2(ab.x * cd.x - ab.y * cd.y, ab.x * cd.y + ab.y * cd.x);
}
// generate wave heightfield at time t based on initial heightfield and
// dispersion relationship
__global__ void generateSpectrumKernel(float2 *h0, float2 *ht,
unsigned int in_width,
unsigned int out_width,
unsigned int out_height, float t,
float patchSize) {
unsigned int x = blockIdx.x * blockDim.x + threadIdx.x;
unsigned int y = blockIdx.y * blockDim.y + threadIdx.y;
unsigned int in_index = y * in_width + x;
unsigned int in_mindex =
(out_height - y) * in_width + (out_width - x); // mirrored
unsigned int out_index = y * out_width + x;
// calculate wave vector
float2 k;
k.x = (-(int)out_width / 2.0f + x) * (2.0f * CUDART_PI_F / patchSize);
k.y = (-(int)out_width / 2.0f + y) * (2.0f * CUDART_PI_F / patchSize);
// calculate dispersion w(k)
float k_len = sqrtf(k.x * k.x + k.y * k.y);
float w = sqrtf(9.81f * k_len);
if ((x < out_width) && (y < out_height)) {
float2 h0_k = h0[in_index];
float2 h0_mk = h0[in_mindex];
// output frequency-space complex values
ht[out_index] =
complex_add(complex_mult(h0_k, complex_exp(w * t)),
complex_mult(conjugate(h0_mk), complex_exp(-w * t)));
// ht[out_index] = h0_k;
}
}
// update height map values based on output of FFT
__global__ void updateHeightmapKernel(float *heightMap, float2 *ht,
unsigned int width) {
unsigned int x = blockIdx.x * blockDim.x + threadIdx.x;
unsigned int y = blockIdx.y * blockDim.y + threadIdx.y;
unsigned int i = y * width + x;
// cos(pi * (m1 + m2))
float sign_correction = ((x + y) & 0x01) ? -1.0f : 1.0f;
heightMap[i] = ht[i].x * sign_correction;
}
// update height map values based on output of FFT
__global__ void updateHeightmapKernel_y(float *heightMap, float2 *ht,
unsigned int width) {
unsigned int x = blockIdx.x * blockDim.x + threadIdx.x;
unsigned int y = blockIdx.y * blockDim.y + threadIdx.y;
unsigned int i = y * width + x;
// cos(pi * (m1 + m2))
float sign_correction = ((x + y) & 0x01) ? -1.0f : 1.0f;
heightMap[i] = ht[i].y * sign_correction;
}
// generate slope by partial differences in spatial domain
__global__ void calculateSlopeKernel(float *h, float2 *slopeOut,
unsigned int width, unsigned int height) {
unsigned int x = blockIdx.x * blockDim.x + threadIdx.x;
unsigned int y = blockIdx.y * blockDim.y + threadIdx.y;
unsigned int i = y * width + x;
float2 slope = make_float2(0.0f, 0.0f);
if ((x > 0) && (y > 0) && (x < width - 1) && (y < height - 1)) {
slope.x = h[i + 1] - h[i - 1];
slope.y = h[i + width] - h[i - width];
}
slopeOut[i] = slope;
}
// wrapper functions
extern "C" void cudaGenerateSpectrumKernel(float2 *d_h0, float2 *d_ht,
unsigned int in_width,
unsigned int out_width,
unsigned int out_height,
float animTime, float patchSize) {
dim3 block(8, 8, 1);
dim3 grid(cuda_iDivUp(out_width, block.x), cuda_iDivUp(out_height, block.y),
1);
generateSpectrumKernel<<<grid, block>>>(d_h0, d_ht, in_width, out_width,
out_height, animTime, patchSize);
}
extern "C" void cudaUpdateHeightmapKernel(float *d_heightMap, float2 *d_ht,
unsigned int width,
unsigned int height, bool autoTest) {
dim3 block(8, 8, 1);
dim3 grid(cuda_iDivUp(width, block.x), cuda_iDivUp(height, block.y), 1);
if (autoTest) {
updateHeightmapKernel_y<<<grid, block>>>(d_heightMap, d_ht, width);
} else {
updateHeightmapKernel<<<grid, block>>>(d_heightMap, d_ht, width);
}
}
extern "C" void cudaCalculateSlopeKernel(float *hptr, float2 *slopeOut,
unsigned int width,
unsigned int height) {
dim3 block(8, 8, 1);
dim3 grid2(cuda_iDivUp(width, block.x), cuda_iDivUp(height, block.y), 1);
calculateSlopeKernel<<<grid2, block>>>(hptr, slopeOut, width, height);
}