-
Notifications
You must be signed in to change notification settings - Fork 1.9k
/
Copy pathsimpleCUFFT_MGPU.cu
400 lines (338 loc) · 14.8 KB
/
simpleCUFFT_MGPU.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of NVIDIA CORPORATION nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/* Example showing the use of CUFFT for fast 1D-convolution using FFT. */
// System includes
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <math.h>
// CUDA runtime
#include <cuda_runtime.h>
//CUFFT Header file
#include <cufftXt.h>
// helper functions and utilities to work with CUDA
#include <helper_functions.h>
#include <helper_cuda.h>
// Complex data type
typedef float2 Complex;
static __device__ __host__ inline Complex ComplexAdd(Complex, Complex);
static __device__ __host__ inline Complex ComplexScale(Complex, float);
static __device__ __host__ inline Complex ComplexMul(Complex, Complex);
static __global__ void ComplexPointwiseMulAndScale(cufftComplex *,
cufftComplex *, int, float);
// Kernel for GPU
void multiplyCoefficient(cudaLibXtDesc *, cudaLibXtDesc *, int, float, int);
// Filtering functions
void Convolve(const Complex *, int, const Complex *, int, Complex *);
// Padding functions
int PadData(const Complex *, Complex **, int, const Complex *, Complex **, int);
////////////////////////////////////////////////////////////////////////////////
// Data configuration
// The filter size is assumed to be a number smaller than the signal size
///////////////////////////////////////////////////////////////////////////////
const int SIGNAL_SIZE = 1018;
const int FILTER_KERNEL_SIZE = 11;
const int GPU_COUNT = 2;
////////////////////////////////////////////////////////////////////////////////
// Program main
////////////////////////////////////////////////////////////////////////////////
int main(int argc, char **argv) {
printf("\n[simpleCUFFT_MGPU] is starting...\n\n");
int GPU_N;
checkCudaErrors(cudaGetDeviceCount(&GPU_N));
if (GPU_N < GPU_COUNT) {
printf("No. of GPU on node %d\n", GPU_N);
printf("Two GPUs are required to run simpleCUFFT_MGPU sample code\n");
exit(EXIT_WAIVED);
}
int *major_minor = (int *)malloc(sizeof(int) * GPU_N * 2);
int found2IdenticalGPUs = 0;
int nGPUs = 2;
int *whichGPUs;
whichGPUs = (int *)malloc(sizeof(int) * nGPUs);
for (int i = 0; i < GPU_N; i++) {
cudaDeviceProp deviceProp;
checkCudaErrors(cudaGetDeviceProperties(&deviceProp, i));
major_minor[i * 2] = deviceProp.major;
major_minor[i * 2 + 1] = deviceProp.minor;
printf("GPU Device %d: \"%s\" with compute capability %d.%d\n", i,
deviceProp.name, deviceProp.major, deviceProp.minor);
}
for (int i = 0; i < GPU_N; i++) {
for (int j = i + 1; j < GPU_N; j++) {
if ((major_minor[i * 2] == major_minor[j * 2]) &&
(major_minor[i * 2 + 1] == major_minor[j * 2 + 1])) {
whichGPUs[0] = i;
whichGPUs[1] = j;
found2IdenticalGPUs = 1;
break;
}
}
if (found2IdenticalGPUs) {
break;
}
}
free(major_minor);
if (!found2IdenticalGPUs) {
printf(
"No Two GPUs with same architecture found\nWaiving simpleCUFFT_2d_MGPU "
"sample\n");
exit(EXIT_WAIVED);
}
// Allocate host memory for the signal
Complex *h_signal = (Complex *)malloc(sizeof(Complex) * SIGNAL_SIZE);
// Initialize the memory for the signal
for (int i = 0; i < SIGNAL_SIZE; ++i) {
h_signal[i].x = rand() / (float)RAND_MAX;
h_signal[i].y = 0;
}
// Allocate host memory for the filter
Complex *h_filter_kernel =
(Complex *)malloc(sizeof(Complex) * FILTER_KERNEL_SIZE);
// Initialize the memory for the filter
for (int i = 0; i < FILTER_KERNEL_SIZE; ++i) {
h_filter_kernel[i].x = rand() / (float)RAND_MAX;
h_filter_kernel[i].y = 0;
}
// Pad signal and filter kernel
Complex *h_padded_signal;
Complex *h_padded_filter_kernel;
int new_size =
PadData(h_signal, &h_padded_signal, SIGNAL_SIZE, h_filter_kernel,
&h_padded_filter_kernel, FILTER_KERNEL_SIZE);
// cufftCreate() - Create an empty plan
cufftResult result;
cufftHandle plan_input;
checkCudaErrors(cufftCreate(&plan_input));
// cufftXtSetGPUs() - Define which GPUs to use
result = cufftXtSetGPUs(plan_input, nGPUs, whichGPUs);
if (result == CUFFT_INVALID_DEVICE) {
printf("This sample requires two GPUs on the same board.\n");
printf("No such board was found. Waiving sample.\n");
exit(EXIT_WAIVED);
} else if (result != CUFFT_SUCCESS) {
printf("cufftXtSetGPUs failed\n");
exit(EXIT_FAILURE);
}
// Print the device information to run the code
printf("\nRunning on GPUs\n");
for (int i = 0; i < nGPUs; i++) {
cudaDeviceProp deviceProp;
checkCudaErrors(cudaGetDeviceProperties(&deviceProp, whichGPUs[i]));
printf("GPU Device %d: \"%s\" with compute capability %d.%d\n",
whichGPUs[i], deviceProp.name, deviceProp.major, deviceProp.minor);
}
size_t *worksize;
worksize = (size_t *)malloc(sizeof(size_t) * nGPUs);
// cufftMakePlan1d() - Create the plan
checkCudaErrors(
cufftMakePlan1d(plan_input, new_size, CUFFT_C2C, 1, worksize));
// cufftXtMalloc() - Malloc data on multiple GPUs
cudaLibXtDesc *d_signal;
checkCudaErrors(cufftXtMalloc(plan_input, (cudaLibXtDesc **)&d_signal,
CUFFT_XT_FORMAT_INPLACE));
cudaLibXtDesc *d_out_signal;
checkCudaErrors(cufftXtMalloc(plan_input, (cudaLibXtDesc **)&d_out_signal,
CUFFT_XT_FORMAT_INPLACE));
cudaLibXtDesc *d_filter_kernel;
checkCudaErrors(cufftXtMalloc(plan_input, (cudaLibXtDesc **)&d_filter_kernel,
CUFFT_XT_FORMAT_INPLACE));
cudaLibXtDesc *d_out_filter_kernel;
checkCudaErrors(cufftXtMalloc(plan_input,
(cudaLibXtDesc **)&d_out_filter_kernel,
CUFFT_XT_FORMAT_INPLACE));
// cufftXtMemcpy() - Copy data from host to multiple GPUs
checkCudaErrors(cufftXtMemcpy(plan_input, d_signal, h_padded_signal,
CUFFT_COPY_HOST_TO_DEVICE));
checkCudaErrors(cufftXtMemcpy(plan_input, d_filter_kernel,
h_padded_filter_kernel,
CUFFT_COPY_HOST_TO_DEVICE));
// cufftXtExecDescriptorC2C() - Execute FFT on data on multiple GPUs
checkCudaErrors(
cufftXtExecDescriptorC2C(plan_input, d_signal, d_signal, CUFFT_FORWARD));
checkCudaErrors(cufftXtExecDescriptorC2C(plan_input, d_filter_kernel,
d_filter_kernel, CUFFT_FORWARD));
// cufftXtMemcpy() - Copy the data to natural order on GPUs
checkCudaErrors(cufftXtMemcpy(plan_input, d_out_signal, d_signal,
CUFFT_COPY_DEVICE_TO_DEVICE));
checkCudaErrors(cufftXtMemcpy(plan_input, d_out_filter_kernel,
d_filter_kernel, CUFFT_COPY_DEVICE_TO_DEVICE));
printf("\n\nValue of Library Descriptor\n");
printf("Number of GPUs %d\n", d_out_signal->descriptor->nGPUs);
printf("Device id %d %d\n", d_out_signal->descriptor->GPUs[0],
d_out_signal->descriptor->GPUs[1]);
printf("Data size on GPU %ld %ld\n",
(long)(d_out_signal->descriptor->size[0] / sizeof(cufftComplex)),
(long)(d_out_signal->descriptor->size[1] / sizeof(cufftComplex)));
// Multiply the coefficients together and normalize the result
printf("Launching ComplexPointwiseMulAndScale<<< >>>\n");
multiplyCoefficient(d_out_signal, d_out_filter_kernel, new_size,
1.0f / new_size, nGPUs);
// cufftXtExecDescriptorC2C() - Execute inverse FFT on data on multiple GPUs
printf("Transforming signal back cufftExecC2C\n");
checkCudaErrors(cufftXtExecDescriptorC2C(plan_input, d_out_signal,
d_out_signal, CUFFT_INVERSE));
// Create host pointer pointing to padded signal
Complex *h_convolved_signal = h_padded_signal;
// Allocate host memory for the convolution result
Complex *h_convolved_signal_ref =
(Complex *)malloc(sizeof(Complex) * SIGNAL_SIZE);
// cufftXtMemcpy() - Copy data from multiple GPUs to host
checkCudaErrors(cufftXtMemcpy(plan_input, h_convolved_signal, d_out_signal,
CUFFT_COPY_DEVICE_TO_HOST));
// Convolve on the host
Convolve(h_signal, SIGNAL_SIZE, h_filter_kernel, FILTER_KERNEL_SIZE,
h_convolved_signal_ref);
// Compare CPU and GPU result
bool bTestResult =
sdkCompareL2fe((float *)h_convolved_signal_ref,
(float *)h_convolved_signal, 2 * SIGNAL_SIZE, 1e-5f);
printf("\nvalue of TestResult %d\n", bTestResult);
// Cleanup memory
free(whichGPUs);
free(worksize);
free(h_signal);
free(h_filter_kernel);
free(h_padded_signal);
free(h_padded_filter_kernel);
free(h_convolved_signal_ref);
// cudaXtFree() - Free GPU memory
checkCudaErrors(cufftXtFree(d_signal));
checkCudaErrors(cufftXtFree(d_filter_kernel));
checkCudaErrors(cufftXtFree(d_out_signal));
checkCudaErrors(cufftXtFree(d_out_filter_kernel));
// cufftDestroy() - Destroy FFT plan
checkCudaErrors(cufftDestroy(plan_input));
exit(bTestResult ? EXIT_SUCCESS : EXIT_FAILURE);
}
///////////////////////////////////////////////////////////////////////////////////
// Function for padding original data
//////////////////////////////////////////////////////////////////////////////////
int PadData(const Complex *signal, Complex **padded_signal, int signal_size,
const Complex *filter_kernel, Complex **padded_filter_kernel,
int filter_kernel_size) {
int minRadius = filter_kernel_size / 2;
int maxRadius = filter_kernel_size - minRadius;
int new_size = signal_size + maxRadius;
// Pad signal
Complex *new_data = (Complex *)malloc(sizeof(Complex) * new_size);
memcpy(new_data + 0, signal, signal_size * sizeof(Complex));
memset(new_data + signal_size, 0, (new_size - signal_size) * sizeof(Complex));
*padded_signal = new_data;
// Pad filter
new_data = (Complex *)malloc(sizeof(Complex) * new_size);
memcpy(new_data + 0, filter_kernel + minRadius, maxRadius * sizeof(Complex));
memset(new_data + maxRadius, 0,
(new_size - filter_kernel_size) * sizeof(Complex));
memcpy(new_data + new_size - minRadius, filter_kernel,
minRadius * sizeof(Complex));
*padded_filter_kernel = new_data;
return new_size;
}
////////////////////////////////////////////////////////////////////////////////
// Filtering operations - Computing Convolution on the host
////////////////////////////////////////////////////////////////////////////////
void Convolve(const Complex *signal, int signal_size,
const Complex *filter_kernel, int filter_kernel_size,
Complex *filtered_signal) {
int minRadius = filter_kernel_size / 2;
int maxRadius = filter_kernel_size - minRadius;
// Loop over output element indices
for (int i = 0; i < signal_size; ++i) {
filtered_signal[i].x = filtered_signal[i].y = 0;
// Loop over convolution indices
for (int j = -maxRadius + 1; j <= minRadius; ++j) {
int k = i + j;
if (k >= 0 && k < signal_size) {
filtered_signal[i] =
ComplexAdd(filtered_signal[i],
ComplexMul(signal[k], filter_kernel[minRadius - j]));
}
}
}
}
////////////////////////////////////////////////////////////////////////////////
// Launch Kernel on multiple GPU
////////////////////////////////////////////////////////////////////////////////
void multiplyCoefficient(cudaLibXtDesc *d_signal,
cudaLibXtDesc *d_filter_kernel, int new_size,
float val, int nGPUs) {
int device;
// Launch the ComplexPointwiseMulAndScale<<< >>> kernel on multiple GPU
for (int i = 0; i < nGPUs; i++) {
device = d_signal->descriptor->GPUs[i];
// Set device
checkCudaErrors(cudaSetDevice(device));
// Perform GPU computations
ComplexPointwiseMulAndScale<<<32, 256>>>(
(cufftComplex *)d_signal->descriptor->data[i],
(cufftComplex *)d_filter_kernel->descriptor->data[i],
int(d_signal->descriptor->size[i] / sizeof(cufftComplex)), val);
}
// Wait for device to finish all operation
for (int i = 0; i < nGPUs; i++) {
device = d_signal->descriptor->GPUs[i];
checkCudaErrors(cudaSetDevice(device));
cudaDeviceSynchronize();
// Check if kernel execution generated and error
getLastCudaError("Kernel execution failed [ ComplexPointwiseMulAndScale ]");
}
}
////////////////////////////////////////////////////////////////////////////////
// Complex operations
////////////////////////////////////////////////////////////////////////////////
// Complex addition
static __device__ __host__ inline Complex ComplexAdd(Complex a, Complex b) {
Complex c;
c.x = a.x + b.x;
c.y = a.y + b.y;
return c;
}
// Complex scale
static __device__ __host__ inline Complex ComplexScale(Complex a, float s) {
Complex c;
c.x = s * a.x;
c.y = s * a.y;
return c;
}
// Complex multiplication
static __device__ __host__ inline Complex ComplexMul(Complex a, Complex b) {
Complex c;
c.x = a.x * b.x - a.y * b.y;
c.y = a.x * b.y + a.y * b.x;
return c;
}
// Complex pointwise multiplication
static __global__ void ComplexPointwiseMulAndScale(cufftComplex *a,
cufftComplex *b, int size,
float scale) {
const int numThreads = blockDim.x * gridDim.x;
const int threadID = blockIdx.x * blockDim.x + threadIdx.x;
for (int i = threadID; i < size; i += numThreads) {
a[i] = ComplexScale(ComplexMul(a[i], b[i]), scale);
}
}