-
Notifications
You must be signed in to change notification settings - Fork 57
/
Copy pathdata_utils.py
80 lines (59 loc) · 2.45 KB
/
data_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
# |------------------------------------------------|
# |Creates a dataset from raw text files |
# |------------------------------------------------|
# |Dataset: OpenSubtitles |
# |Url: http://opus.lingfil.uu.se/OpenSubtitles.php|
# |Creator: Nemanja Tomic |
# |------------------------------------------------|
import cPickle as pickle
from collections import Counter
def read_sentences(file_path):
sentences = []
with open(file_path, 'r') as reader:
for s in reader:
sentences.append(s.strip())
return sentences
def create_dataset(en_sentences, de_sentences):
en_vocab_dict = Counter(word.strip(',." ;:)(][?!') for sentence in en_sentences for word in sentence.split())
de_vocab_dict = Counter(word.strip(',." ;:)(][?!') for sentence in de_sentences for word in sentence.split())
en_vocab = map(lambda x: x[0], sorted(en_vocab_dict.items(), key = lambda x: -x[1]))
de_vocab = map(lambda x: x[0], sorted(de_vocab_dict.items(), key = lambda x: -x[1]))
en_vocab = en_vocab[:20000]
de_vocab = de_vocab[:30000]
start_idx = 2
en_word2idx = dict([(word, idx+start_idx) for idx, word in enumerate(en_vocab)])
en_word2idx['<ukn>'] = 0
en_word2idx['<pad>'] = 1
en_idx2word = dict([(idx, word) for word, idx in en_word2idx.iteritems()])
start_idx = 4
de_word2idx = dict([(word, idx+start_idx) for idx, word in enumerate(de_vocab)])
de_word2idx['<ukn>'] = 0
de_word2idx['<go>'] = 1
de_word2idx['<eos>'] = 2
de_word2idx['<pad>'] = 3
de_idx2word = dict([(idx, word) for word, idx in de_word2idx.iteritems()])
x = [[en_word2idx.get(word.strip(',." ;:)(][?!'), 0) for word in sentence.split()] for sentence in en_sentences]
y = [[de_word2idx.get(word.strip(',." ;:)(][?!'), 0) for word in sentence.split()] for sentence in de_sentences]
X = []
Y = []
for i in range(len(x)):
n1 = len(x[i])
n2 = len(y[i])
n = n1 if n1 < n2 else n2
if abs(n1 - n2) <= 0.3 * n:
if n1 <= 15 and n2 <= 15:
X.append(x[i])
Y.append(y[i])
return X, Y, en_word2idx, en_idx2word, en_vocab, de_word2idx, de_idx2word, de_vocab
def save_dataset(file_path, obj):
with open(file_path, 'wb') as f:
pickle.dump(obj, f, -1)
def read_dataset(file_path):
with open(file_path, 'rb') as f:
return pickle.load(f)
def main():
en_sentences = read_sentences('data/data.en')
de_sentences = read_sentences('data/data.de')
save_dataset('./data.pkl', create_dataset(en_sentences, de_sentences))
if __name__ == '__main__':
main()