forked from kubeflow/examples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmnist_pipeline.py
103 lines (90 loc) · 2.88 KB
/
mnist_pipeline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
# Copyright 2019 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Kubeflow Pipelines MNIST example
Run this script to compile pipeline
"""
import kfp.dsl as dsl
import kfp.gcp as gcp
import kfp.onprem as onprem
platform = 'GCP'
@dsl.pipeline(
name='MNIST',
description='A pipeline to train and serve the MNIST example.'
)
def mnist_pipeline(model_export_dir='gs://your-bucket/export',
train_steps='200',
learning_rate='0.01',
batch_size='100',
pvc_name=''):
"""
Pipeline with three stages:
1. train an MNIST classifier
2. deploy a tf-serving instance to the cluster
3. deploy a web-ui to interact with it
"""
train = dsl.ContainerOp(
name='train',
image='gcr.io/kubeflow-examples/mnist/model:v20190304-v0.2-176-g15d997b',
arguments=[
"/opt/model.py",
"--tf-export-dir", model_export_dir,
"--tf-train-steps", train_steps,
"--tf-batch-size", batch_size,
"--tf-learning-rate", learning_rate
]
)
serve_args = [
'--model-export-path', model_export_dir,
'--server-name', "mnist-service"
]
if platform != 'GCP':
serve_args.extend([
'--cluster-name', "mnist-pipeline",
'--pvc-name', pvc_name
])
serve = dsl.ContainerOp(
name='serve',
image='gcr.io/ml-pipeline/ml-pipeline-kubeflow-deployer:'
'7775692adf28d6f79098e76e839986c9ee55dd61',
arguments=serve_args
)
serve.after(train)
webui_args = [
'--image', 'gcr.io/kubeflow-examples/mnist/web-ui:'
'v20190304-v0.2-176-g15d997b-pipelines',
'--name', 'web-ui',
'--container-port', '5000',
'--service-port', '80',
'--service-type', "LoadBalancer"
]
if platform != 'GCP':
webui_args.extend([
'--cluster-name', "mnist-pipeline"
])
web_ui = dsl.ContainerOp(
name='web-ui',
image='gcr.io/kubeflow-examples/mnist/deploy-service:latest',
arguments=webui_args
)
web_ui.after(serve)
steps = [train, serve, web_ui]
for step in steps:
if platform == 'GCP':
step.apply(gcp.use_gcp_secret('user-gcp-sa'))
else:
step.apply(onprem.mount_pvc(pvc_name, 'local-storage', '/mnt'))
if __name__ == '__main__':
import kfp.compiler as compiler
compiler.Compiler().compile(mnist_pipeline, __file__ + '.tar.gz')