-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
207 lines (178 loc) · 7.47 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
import csv
from datetime import datetime
from glob import glob
import os
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
from glob import glob
from sklearn.model_selection import train_test_split
import random
from custom_data import CustomDataset, load_all_data
from models import EEGNet_8_2
import matplotlib.pyplot as plt
# Set the random seed for reproducibility
random.seed(42)
np.random.seed(42)
torch.manual_seed(42)
# Gather all data from all directories
all_dirs = glob('/path/to/your/data')
# Shuffle the dirs
random.shuffle(all_dirs)
train_dirs, val_dirs = train_test_split(all_dirs, test_size=0.2, random_state=42)
val_dirs, test_dirs = train_test_split(val_dirs, test_size=0.5, random_state=42)
train_data = load_all_data(train_dirs)
val_data = load_all_data(val_dirs)
test_data = load_all_data(test_dirs)
# Create datasets and data loaders
train_dataset = CustomDataset(data=train_data)
train_loader = DataLoader(train_dataset, batch_size=256, shuffle=True)
val_dataset = CustomDataset(data=val_data)
val_loader = DataLoader(val_dataset, batch_size=128, shuffle=True)
test_dataset = CustomDataset(data=test_data)
test_loader = DataLoader(test_dataset, batch_size=128, shuffle=True)
os.makedirs('/path/to/you',exist_ok=True)
current_path = '/path/to/you'
# Parameters
drops = [0.5, 0.25, 0.1, 0]
lrs = [0.001, 0.0005, 0.0001]
wds = [0, 0.001, 0.0005]
models = {
'eegnet_8_2': EEGNet_8_2,
# 'eegnet_4_2': EEGNet_4_2,
# 'eegnex_8_32': EEGNeX_8_32,
# 'singlelstm': SingleLSTM,
# 'singlegru': SingleGRU,
# 'onedcnn': OneDCNN,
# 'onedcnncausal': OneDCNNCausal,
# 'onedcnndilated': OneDCNNDilated,
# 'onedcnncd': OneDCNNCausalDilated,
# 'twodcnn': TwoDCNN,
# 'twodcnndepth': TwoDCNNDepthwise,
# 'twodcnndilated': TwoDCNNDilated,
# 'twodcnnseparable': TwoDCNNSeparable,
# 'cnnlstm': CNNLSTM,
# 'cnngru': CNNGRU,
# 'flashlightnet': FlashlightNet,
# 'ienet': IENet,
# 'mieegnet': MI_EEGNet,
# 'seegnet': SEEGNet,
# 'mibminet': MI_BMInet,
}
def train_and_validate(drop, lr, wd, model_class, modelname):
save_dir = 'save_dir'
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = model_class(n_timesteps=500, n_features=32, n_outputs=2, DR=drop)
model.to(device).double()
criterion = nn.BCEWithLogitsLoss().double() # Use double precision
optimizer = optim.Adam(model.parameters(), lr=lr, weight_decay=wd)
best_val_acc = 0.0
patience_counter = 0
epochs = 300
patience = 50
train_losses = []
val_losses = []
train_accuracies = []
val_accuracies = []
test_accuracies = []
for epoch in range(epochs):
model.train()
epoch_train_loss = 0.0
epoch_train_acc = 0.0
for inputs, labels in train_loader:
inputs, labels = inputs.to(device).double(), labels.to(device).double() # Use double precision
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
epoch_train_loss += loss.item() / len(train_loader)
acc = (outputs.argmax(dim=1) == labels.argmax(dim=1)).float().mean()
epoch_train_acc += acc / len(train_loader)
model.eval()
epoch_val_loss = 0.0
epoch_val_acc = 0.0
with torch.no_grad():
for inputs, labels in val_loader:
inputs, labels = inputs.to(device).double(), labels.to(device).double() # Use double precision
outputs = model(inputs)
loss = criterion(outputs, labels)
epoch_val_loss += loss.item() / len(val_loader)
acc = (outputs.argmax(dim=1) == labels.argmax(dim=1)).float().mean()
epoch_val_acc += acc / len(val_loader)
train_losses.append(epoch_train_loss)
val_losses.append(epoch_val_loss)
train_accuracies.append(epoch_train_acc.item())
val_accuracies.append(epoch_val_acc.item())
print(f'Epoch {epoch + 1}: Train Acc: {epoch_train_acc:.2f}, Train Loss: {epoch_train_loss:.2f}')
print(f'Epoch {epoch + 1}: Val Acc: {epoch_val_acc:.2f}, Val Loss: {epoch_val_loss:.2f}')
if epoch_val_acc > best_val_acc:
best_val_acc = epoch_val_acc
patience_counter = 0
print("Validation accuracy improved! Saving model...")
os.makedirs(current_path + f'/{save_dir}/{modelname}/{drop}_{lr}_{wd}', exist_ok=True)
torch.save({
'epoch': epoch,
'model_state_dict': model.module.state_dict() if torch.cuda.device_count() > 1 else model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'best_val_acc': best_val_acc
}, current_path + f'/{save_dir}/{modelname}/{drop}_{lr}_{wd}/model_checkpoint_{drop}_{lr}_{wd}.pth')
epoch_test_acc = 0.0
with torch.no_grad():
for inputs, labels in test_loader:
inputs, labels = inputs.to(device).double(), labels.to(device).double()
outputs = model(inputs)
acc = (outputs.argmax(dim=1) == labels.argmax(dim=1)).float().mean().item()
epoch_test_acc += acc
epoch_test_acc /= len(test_loader)
else:
patience_counter += 1
if patience_counter >= patience:
print(f'Early stopping: No improvement for {patience} epochs.')
break
# Plotting the results
plt.figure(figsize=(12, 6))
plt.subplot(1, 3, 1)
plt.plot(train_losses, label='Train Loss')
plt.plot(val_losses, label='Val Loss')
plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.title('Loss over Epochs')
plt.legend()
plt.subplot(1, 3, 2)
plt.plot(train_accuracies, label='Train Acc')
plt.plot(val_accuracies, label='Val Acc')
plt.xlabel('Epoch')
plt.ylabel('Accuracy')
plt.title('Accuracy over Epochs')
plt.legend()
plt.subplot(1, 3, 3)
plt.plot(test_accuracies, label='Test Acc')
plt.xlabel('Epoch')
plt.ylabel('Accuracy')
plt.title('Test Accuracy over Epochs')
plt.legend()
os.makedirs(current_path + f'/{save_dir}_png/{modelname}/{drop}_{lr}_{wd}', exist_ok=True)
plt.savefig(current_path + f'/{save_dir}_png/{modelname}/{drop}_{lr}_{wd}/training_plot_{drop}_{lr}_{wd}_{epoch_test_acc}.png')
plt.show()
return epoch_test_acc
# Main function to run the processes
import itertools
param_combinations = list(itertools.product(drops, lrs, wds))
results = {modelname: [] for modelname in models.keys()}
for modelname, model_class in models.items():
for drop, lr, wd in param_combinations:
acc = train_and_validate(drop, lr, wd, model_class, modelname)
results[modelname].append((drop, lr, wd, acc))
output_dir = current_path + '/result'
output_path = os.path.join(output_dir, "results.txt")
if not os.path.exists(output_dir):
os.makedirs(output_dir)
with open(output_path, "w") as f:
for modelname, values in results.items():
f.write(f"Model: {modelname}\n")
for drop, lr, wd, acc in values:
f.write(f"Drop: {drop}, LR: {lr}, WD: {wd}, Accuracy: {acc}\n")
f.write("\n")