-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdpo.py
71 lines (63 loc) · 3.08 KB
/
dpo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
import torch
import torch.nn.functional as F
class DPO:
def __init__(self, model, model_opt, config):
self.model = model
self.model_opt = model_opt
self.beta = config.beta
self.dpo_epochs = config.dpo_epochs
def train(self, inputs_ids, attention_mask, ref_logits, labels_mask):
# 计算参考模型的logps
ref_token_logps = self.probs_from_logits(torch.tensor(ref_logits)[:, :-1, :], inputs_ids[:, 1:])
ref_logps = self.filter_mask(ref_token_logps, labels_mask)
# 一次数据多训练几次,这样reference只用计算一次
for dpo_epoch in range(self.dpo_epochs):
# 计算策略模型的logps
logits = self.model(inputs_ids, attention_mask)
policy_token_logps = self.probs_from_logits(logits[:, :-1, :], inputs_ids[:, 1:])
policy_logps = self.filter_mask(policy_token_logps, labels_mask)
loss = self.dpo_loss(policy_logps, ref_logps)
self.model_opt.zero_grad()
loss.backward()
self.model_opt.step()
print(loss)
def dpo_loss(self, policy_logps, ref_logps):
"""
计算公式L_{DPO}(\pi_{\theta};\pi_{ref}) = -E[log sigmoid(\beta[log(\pi_\theta(y_w|x)/\pi_{ref}(y_w|x) - log(\pi_\theta(y_l|x)/\pi_{ref}(y_l|x))])]
详细过程可以看博客:https://zhuanlan.zhihu.com/p/702774357
:param policy_logps: 策略模型的logps
:param ref_logps: 参考模型的logps
:return: loss
"""
def concat_probs(logps):
"""
拆开合理与不合理数据的logps
:param logps: 参考模型或者策略模型的logps
:return: 合理和不合理数据的logps
"""
len_chosen = int(len(logps) / 2)
rejected_data = torch.cat(logps[:len_chosen])
chosen_data = torch.cat(logps[len_chosen:])
return rejected_data, chosen_data
policy_rejected_logps, policy_chosen_logps = concat_probs(policy_logps) # 计算合理数据的logps和不合理数据的logps
ref_rejected_logps, ref_chosen_logps = concat_probs(ref_logps)
pi_logratios = policy_chosen_logps - policy_rejected_logps
ref_logratios = ref_chosen_logps - ref_rejected_logps
# 这里计算策略模型合理与不合理差距与参考模型合理与不合理差距的差
logits = pi_logratios - ref_logratios
loss = -F.logsigmoid(self.beta * logits)
return loss.mean()
@staticmethod
def probs_from_logits(logits, labels):
log_probs = F.log_softmax(logits, dim=2)
probs = torch.gather(log_probs, 2, labels.unsqueeze(2)).squeeze(-1)
return probs
@staticmethod
def filter_mask(values, labels_masks):
"""
:param values: 一般是prob_old、prob_ref、value(价值)的值
:param labels_masks:label 对应的mask
:return: 去除padding之后的数据
"""
return [value[one_response_ids_mask[:-1] == 1].sum().unsqueeze(0) for value, one_response_ids_mask in
zip(values, labels_masks)]