-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstandalone_d_dqn.py
304 lines (262 loc) · 11.9 KB
/
standalone_d_dqn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
"""double dqn"""
import random
import datetime as dt
import math
import click
import numpy as np
import tensorflow as tf
from tensorflow import keras
# on importe les configurations existantes de modèles depuis le fichier conf
import conf
from conf import MODELS
from conf import PATH, MAX_POWER
import energy_gym
from energy_gym import get_feed, set_extra_params
# pylint: disable=no-value-for-parameter
GAME = "Heat"
DIR = "TensorBoard/DDQN"
STORE_PATH = f'{DIR}/{GAME}'
MAX_EPSILON = 1
MIN_EPSILON = 0.01
LAMBDA = 0.0003
#LAMBDA = 5e-5
BATCH_SIZE = 50
TAU = 0.05
RENDER = False
NOW = dt.datetime.now().strftime('%d%m%Y%H%M')
DOUBLE_Q = True
INTERVAL = 3600
SCENARIOS = ["Hyst",
"Vacancy", "StepRewardVacancy", "TopLimitVacancy",
"D2Vacancy"]
def show_episode_stats(env):
"""affiche les statistiques de l'épisode en cours pour l'environnement"""
message = "consigne de température intérieure:"
message = f'{message} {env.tc_episode}°C vs {env.tint[-1:]}'
print(message)
tint_min = np.amin(env.tint)
tint_max = np.amax(env.tint)
tint_moy = np.mean(env.tint)
text_min = np.amin(env.text[env.pos:env.pos+env.wsize])
text_max = np.amax(env.text[env.pos:env.pos+env.wsize])
text_moy = np.mean(env.text[env.pos:env.pos+env.wsize])
message = f'Text min {text_min:.2f} Text moy {text_moy:.2f}'
message = f'{message} Text max {text_max:.2f}'
print(message)
message = f'Tint min {tint_min:.2f} Tint moy {tint_moy:.2f}'
message = f'{message} Tint max {tint_max:.2f}'
print(message)
peko = 100 * env.tot_eko // env.wsize
print(f'{peko}% d\'énergie économisée')
pmin_eko = 100 * env.min_eko // env.wsize
print(f'économie si maintien tc durant épisode: {pmin_eko:.2f}%')
meko = 100 * env.limit // env.wsize
print(f'économie selon solution optimale {meko:.2f}%')
print(f'soit un début de chauffe à l\'indice: {int(env.limit)}')
def add_scalars_to_tensorboard(train_writer, i, reward, avg_loss, env):
"""met à jour les indicateurs qualité tensorboard pour l'épisode i"""
with train_writer.as_default():
tf.summary.scalar('reward', reward, step=i)
tf.summary.scalar('avg loss', avg_loss, step=i)
delta_to_tc = env.tint[-1] - env.tc_episode
tf.summary.scalar('respect_tc_ouverture', delta_to_tc, step=i)
if "Vacancy" in env.__class__.__name__:
gain = 100 * (env.tot_eko - env.min_eko) // env.wsize
tf.summary.scalar('gain_sur_baseline', gain, step=i)
class Memory:
"""experience replay memory"""
def __init__(self, max_memory):
self._max_memory = max_memory
self._samples = []
def add_sample(self, sample):
"""add a sample"""
self._samples.append(sample)
if len(self._samples) > self._max_memory:
self._samples.pop(0)
def sample(self, no_samples):
"""extract a batch"""
if no_samples > len(self._samples):
return random.sample(self._samples, len(self._samples))
return random.sample(self._samples, no_samples)
@property
def num_samples(self):
"""memory size"""
return len(self._samples)
def choose_action(state, primary_network, eps, num_actions):
"""epsilon greedy action"""
if random.random() < eps:
return random.randint(0, num_actions - 1)
return np.argmax(primary_network(state.reshape(1, *state.shape)))
def train(primary_network, mem, state_shape, gamma, target_network=None):
"""Generic Network Trainer
DQN (target_network=None) or DDQN mode"""
if mem.num_samples < BATCH_SIZE * 3:
return 0
batch = mem.sample(BATCH_SIZE)
states = np.array([val[0] for val in batch])
actions = np.array([val[1] for val in batch])
next_states = np.array([(np.zeros(state_shape)
if val[3] is None else val[3]) for val in batch])
# predict q values for states
prim_qsa = primary_network(states)
# predict q values for next_states
prim_qsad = primary_network(next_states)
# updates contient les discounted rewards
updates = np.array([val[2] for val in batch], dtype=float)
# les axes des samples
smp_axis = tuple(range(1, len(next_states.shape)))
valid_idxs = np.array(next_states).sum(axis=smp_axis) != 0
batch_idxs = np.arange(BATCH_SIZE)
if target_network is None:
# classic DQN
updates[valid_idxs] += gamma * np.amax(prim_qsad.numpy()[valid_idxs, :],
axis=1)
else:
# double DQN
# 1) prim_actions = indices pour lesquels qsad prend sa valeur max
# 2) q_from_target = q values for next_states avec le target_network
# 3) on calcule les discounted rewards à partir des valeurs du target_network
# MAIS avec les indices fournis par le primary_network
# cf google deepmind : https://arxiv.org/pdf/1509.06461.pdf
prim_actions = np.argmax(prim_qsad.numpy(), axis=1)
q_from_target = target_network(next_states)
updates[valid_idxs] += gamma * q_from_target.numpy()[
batch_idxs[valid_idxs],
prim_actions[valid_idxs]
]
# on calcule le target_q à utiliser dans train_on_batch
target_q = prim_qsa.numpy()
target_q[batch_idxs, actions] = updates
loss = primary_network.train_on_batch(states, target_q)
if target_network is not None:
# slowly update target_network from primary_network
for t_tv, p_tv in zip(target_network.trainable_variables,
primary_network.trainable_variables):
t_tv.assign(t_tv * (1 - TAU) + p_tv * TAU)
return loss
@click.command()
@click.option('--nbtext', type=int, default=1, prompt='numéro du flux temp. extérieure ?')
@click.option('--modelkey', type=click.Choice(conf.NAMES), prompt='modèle ou banque ?')
@click.option('--scenario', type=click.Choice(SCENARIOS), default="Vacancy", prompt='scénario ?')
@click.option('--tc', type=int, default=20, prompt='consigne moyenne de confort en °C ?')
@click.option('--halfrange', type=int, default=0, prompt='demi-étendue en °C pour W à consigne variable ?')
@click.option('--gamma', type=float, default=0.97, prompt='discount parameter GAMMA ?')
@click.option('--num_episodes', type=int, default=5400, prompt="nombre d'épisodes ?")
@click.option('--nb_mlp_per_layer', type=int, default=50, prompt="nombre de neurones par couche ?")
@click.option('--mean_prev', type=bool, default=False)
@click.option('--k', type=float, default=1)
@click.option('--k_step', type=float, default=1)
@click.option('--p_c', type=int, default=15)
@click.option('--vote_interval', type=float, nargs=2, default=(-1, 1))
@click.option('--nbh', type=int, default=None)
@click.option('--nbh_forecast', type=int, default=None)
@click.option('--action_space', type=int, default=2)
@click.option('--verbose', type=bool, default=False)
@click.option('--autosize_max_power', type=bool, default=False)
@click.option('--rc_min', type=int, default=50)
@click.option('--rc_max', type=int, default=100)
def main(nbtext, modelkey, scenario, tc, halfrange, gamma, num_episodes,
nb_mlp_per_layer, mean_prev, k, k_step, p_c, vote_interval,
nbh, nbh_forecast, action_space, verbose,
autosize_max_power, rc_min, rc_max):
"""main command"""
text = get_feed(nbtext, INTERVAL, path=PATH)
defmodel = conf.generate(bank_name=modelkey)
model = MODELS.get(modelkey, defmodel)
model = set_extra_params(model, action_space=action_space)
model = set_extra_params(model, mean_prev=mean_prev)
model = set_extra_params(model, k=k, k_step=k_step, p_c=p_c)
model = set_extra_params(model, vote_interval=vote_interval)
model = set_extra_params(model, nbh_forecast=nbh_forecast, nbh=nbh)
model = set_extra_params(model, autosize_max_power=autosize_max_power)
env = getattr(energy_gym, scenario)(text, MAX_POWER, tc, **model)
print(env.model)
input("press a key")
state_shape = env.observation_space.shape
num_actions = env.action_space.n
primary_network = keras.Sequential([
keras.layers.Dense(nb_mlp_per_layer, activation='relu'),
keras.layers.Dense(nb_mlp_per_layer, activation='relu'),
keras.layers.Dense(num_actions)
])
target_network = keras.Sequential([
keras.layers.Dense(nb_mlp_per_layer, activation='relu'),
keras.layers.Dense(nb_mlp_per_layer, activation='relu'),
keras.layers.Dense(num_actions)
])
primary_network.compile(optimizer=keras.optimizers.Adam(), loss='mse')
eps = MAX_EPSILON
steps = 0
memory = Memory(50000)
for i in range(num_episodes):
tc_episode = tc + random.randint(-halfrange, halfrange)
if modelkey not in MODELS:
newmodel = conf.generate(bank_name=modelkey, rc_min=rc_min, rc_max=rc_max)
env.update_model(newmodel)
print("***********************************************************")
conf.output_model(env.model)
state = env.reset(tc_episode=tc_episode)
max_power = round(env.max_power * 1e-3)
print(f'max power : {max_power} kW')
cnt = 0
avg_loss = 0
while True:
if RENDER:
env.render()
if verbose:
print(state)
input("press a key")
action = choose_action(state, primary_network, eps, num_actions)
next_state, reward, done, _ = env.step(action)
if i == 0 and env.i == 1:
# première étape du premier épisode
suffix = modelkey
suffix = f'{suffix}_no_rc_min' if rc_min < 0 else f'{suffix}_rc_min={rc_min}'
suffix = f'{suffix}_no_rc_max' if rc_max < 0 else f'{suffix}_rc_max={rc_max}'
suffix = f'{suffix}_GAMMA={gamma:.2e}'
suffix = f'{suffix}_LAMBDA={LAMBDA:.2e}'
suffix = f'{suffix}_NBACTIONS={num_actions}'
if nb_mlp_per_layer != 50:
suffix = f'{suffix}_{nb_mlp_per_layer}MLP'
if autosize_max_power:
suffix = f'{suffix}_AUTOPOWER'
else:
suffix = f'{suffix}_{max_power}kW'
suffix = f'{suffix}_tc={tc}'
if halfrange:
suffix = f'{suffix}+ou-{halfrange}'
if nbh:
suffix = f'{suffix}_past={nbh}h'
if nbh_forecast:
suffix = f'{suffix}_future={nbh_forecast}h'
if mean_prev:
suffix = f'{suffix}_MEAN_PREV'
if "Vacancy" in scenario:
suffix = f'{suffix}_k={k:.2e}_k_step={k_step:.2e}_p_c={p_c}'
suffix = f'{suffix}_vote_interval={vote_interval[0]}A{vote_interval[1]}'
tw_path = f'{STORE_PATH}/{scenario}{num_episodes}_{NOW}_{suffix}'
train_writer = tf.summary.create_file_writer(tw_path)
if done:
next_state = None
# store in memory
memory.add_sample((state, action, reward, next_state))
loss = train(primary_network, memory, state_shape, gamma, target_network if DOUBLE_Q else None)
avg_loss += loss
state = next_state
# exponentially decay the eps value
steps += 1
eps = MIN_EPSILON + (MAX_EPSILON - MIN_EPSILON) * math.exp(-LAMBDA * steps)
if done:
avg_loss /= cnt
message = f'Episode: {i}, Reward: {reward:.3f}, Total Reward: {env.tot_reward:.3f}'
message = f'{message}, avg loss: {avg_loss:.3f}, eps: {eps:.3f}'
print(message)
show_episode_stats(env)
add_scalars_to_tensorboard(train_writer, i, reward, avg_loss, env)
break
cnt += 1
save = input("save ? Y=yes")
if save == "Y":
primary_network.save(f'{STORE_PATH}_{scenario}{num_episodes}_{NOW}_{suffix}')
if __name__ == "__main__":
main()