-
Notifications
You must be signed in to change notification settings - Fork 1.7k
/
Copy pathtrain.py
200 lines (179 loc) · 6.24 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import random
import argparse
import numpy as np
import paddle
from paddleseg.utils import logger, get_sys_env
import utils
from cvlibs import Config
from script.train import Trainer
from datasets import CityDataset, GTA5Dataset, SYNTHIADataset
def parse_args():
parser = argparse.ArgumentParser(description='Model training')
# params of training
parser.add_argument(
"--config", dest="cfg", help="The config file.", default=None, type=str)
parser.add_argument(
'--iters',
dest='iters',
help='iters for training',
type=int,
default=None)
parser.add_argument(
'--batch_size',
dest='batch_size',
help='Mini batch size of one gpu or cpu',
type=int,
default=None)
parser.add_argument(
'--learning_rate',
dest='learning_rate',
help='Learning rate',
type=float,
default=None)
parser.add_argument(
'--save_interval',
dest='save_interval',
help='How many iters to save a model snapshot once during training.',
type=int,
default=1000)
parser.add_argument(
'--resume_model',
dest='resume_model',
help='The path of resume model',
type=str,
default=None)
parser.add_argument(
'--save_dir',
dest='save_dir',
help='The directory for saving the model snapshot',
type=str,
default='./output')
parser.add_argument(
'--keep_checkpoint_max',
dest='keep_checkpoint_max',
help='Maximum number of checkpoints to save',
type=int,
default=5)
parser.add_argument(
'--num_workers',
dest='num_workers',
help='Num workers for data loader',
type=int,
default=0)
parser.add_argument(
'--do_eval',
dest='do_eval',
help='Eval while training',
action='store_true')
parser.add_argument(
'--log_iters',
dest='log_iters',
help='Display logging information at every log_iters',
default=10,
type=int)
parser.add_argument(
'--use_vdl',
dest='use_vdl',
help='Whether to record the data to VisualDL during training',
action='store_true')
parser.add_argument(
'--seed',
dest='seed',
help='Set the random seed during training.',
default=42,
type=int)
parser.add_argument(
'--fp16', dest='fp16', help='Whther to use amp', action='store_true')
parser.add_argument(
'--data_format',
dest='data_format',
help='Data format that specifies the layout of input. It can be "NCHW" or "NHWC". Default: "NCHW".',
type=str,
default='NCHW')
return parser.parse_args()
def main(args):
if args.seed is not None:
paddle.seed(args.seed)
np.random.seed(args.seed)
random.seed(args.seed)
logger.info('Set seed to {}'.format(args.seed))
env_info = get_sys_env()
info = ['{}: {}'.format(k, v) for k, v in env_info.items()]
info = '\n'.join(['', format('Environment Information', '-^48s')] + info +
['-' * 48])
logger.info(info)
place = 'gpu' if env_info['Paddle compiled with cuda'] and env_info[
'GPUs used'] else 'cpu'
paddle.set_device(place)
if not args.cfg:
raise RuntimeError('No configuration file specified.')
cfg = Config(
args.cfg,
learning_rate=args.learning_rate,
iters=args.iters,
batch_size=args.batch_size)
if cfg.dic["data"]["source"]["dataset"] == 'synthia':
train_dataset_src = SYNTHIADataset(
split='train', **cfg.dic["data"]["source"]["kwargs"])
val_dataset_src = SYNTHIADataset(
split='val', **cfg.dic["data"]["source"]["kwargs"])
elif cfg.dic["data"]["source"]["dataset"] == 'gta5':
train_dataset_src = GTA5Dataset(
split='train', **cfg.dic["data"]["source"]["kwargs"])
val_dataset_src = GTA5Dataset(
split='val', **cfg.dic["data"]["source"]["kwargs"])
else:
raise NotImplementedError()
if cfg.dic["data"]["target"]["dataset"] == 'cityscapes':
train_dataset_tgt = CityDataset(
split='train', **cfg.dic["data"]["target"]["kwargs"])
val_dataset_tgt = CityDataset(
split='val', **cfg.dic["data"]["target"]["kwargs"])
else:
raise NotImplementedError()
val_dataset_tgt = val_dataset_tgt if args.do_eval else None
val_dataset_src = val_dataset_src if args.do_eval else None
if train_dataset_src is None:
raise RuntimeError(
'The training dataset is not specified in the configuration file.')
elif len(train_dataset_src) == 0:
raise ValueError(
'The length of train_dataset is 0. Please check if your dataset is valid'
)
msg = '\n---------------Config Information---------------\n'
msg += str(cfg)
msg += '------------------------------------------------'
logger.info(msg)
trainer = Trainer(model=cfg.model, cfg=cfg.dic)
trainer.train(
train_dataset_src,
train_dataset_tgt,
val_dataset_tgt=val_dataset_tgt,
val_dataset_src=val_dataset_src,
optimizer=cfg.optimizer,
save_dir=args.save_dir,
iters=cfg.iters,
batch_size=cfg.batch_size,
resume_model=args.resume_model,
save_interval=args.save_interval,
log_iters=args.log_iters,
num_workers=args.num_workers,
use_vdl=args.use_vdl,
keep_checkpoint_max=args.keep_checkpoint_max,
test_config=cfg.test_config)
if __name__ == '__main__':
args = parse_args()
main(args)