-
Notifications
You must be signed in to change notification settings - Fork 1.7k
/
Copy pathvision_transformer.py
404 lines (342 loc) · 13.6 KB
/
vision_transformer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import math
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
import numpy as np
from paddleseg.cvlibs import manager
from paddleseg.utils import utils, logger
from paddleseg.models.backbones.transformer_utils import to_2tuple, DropPath, Identity
class Mlp(nn.Layer):
def __init__(self,
in_features,
hidden_features=None,
out_features=None,
act_layer=nn.GELU,
drop=0.):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Linear(in_features, hidden_features)
self.act = act_layer()
self.fc2 = nn.Linear(hidden_features, out_features)
self.drop = nn.Dropout(drop)
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.drop(x)
x = self.fc2(x)
x = self.drop(x)
return x
class Attention(nn.Layer):
def __init__(self,
dim,
num_heads=8,
qkv_bias=False,
qk_scale=None,
attn_drop=0.,
proj_drop=0.):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = qk_scale or head_dim**-0.5
self.qkv = nn.Linear(dim, dim * 3, bias_attr=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
def forward(self, x):
x_shape = x.shape
N, C = x_shape[1], x_shape[2]
qkv = self.qkv(x).reshape(
(-1, N, 3, self.num_heads, C // self.num_heads)).transpose(
(2, 0, 3, 1, 4))
q, k, v = qkv[0], qkv[1], qkv[2]
attn = (q.matmul(k.transpose((0, 1, 3, 2)))) * self.scale
attn = nn.functional.softmax(attn, axis=-1)
attn = self.attn_drop(attn)
x = (attn.matmul(v)).transpose((0, 2, 1, 3)).reshape((-1, N, C))
x = self.proj(x)
x = self.proj_drop(x)
return x
class Block(nn.Layer):
def __init__(self,
dim,
num_heads,
mlp_ratio=4.,
qkv_bias=False,
qk_scale=None,
drop=0.,
attn_drop=0.,
drop_path=0.,
act_layer=nn.GELU,
norm_layer='nn.LayerNorm',
epsilon=1e-5):
super().__init__()
self.norm1 = eval(norm_layer)(dim, epsilon=epsilon)
self.attn = Attention(dim,
num_heads=num_heads,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
attn_drop=attn_drop,
proj_drop=drop)
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
self.drop_path = DropPath(drop_path) if drop_path > 0. else Identity()
self.norm2 = eval(norm_layer)(dim, epsilon=epsilon)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(in_features=dim,
hidden_features=mlp_hidden_dim,
act_layer=act_layer,
drop=drop)
def forward(self, x):
x = x + self.drop_path(self.attn(self.norm1(x)))
x = x + self.drop_path(self.mlp(self.norm2(x)))
return x
class PatchEmbed(nn.Layer):
""" Image to Patch Embedding
"""
def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768):
super().__init__()
self.img_size = to_2tuple(img_size)
self.patch_size = to_2tuple(patch_size)
self.proj = nn.Conv2D(in_chans,
embed_dim,
kernel_size=patch_size,
stride=patch_size)
@property
def num_patches_in_h(self):
return self.img_size[1] // self.patch_size[1]
@property
def num_patches_in_w(self):
return self.img_size[0] // self.patch_size[0]
def forward(self, x):
x = self.proj(x)
return x
@manager.BACKBONES.add_component
class VisionTransformer(nn.Layer):
""" Vision Transformer with support for patch input
"""
def __init__(self,
img_size=224,
patch_size=16,
in_channels=3,
embed_dim=768,
depth=12,
num_heads=12,
mlp_ratio=4,
qkv_bias=False,
qk_scale=None,
drop_rate=0.,
attn_drop_rate=0.,
drop_path_rate=0.,
norm_layer='nn.LayerNorm',
epsilon=1e-5,
final_norm=False,
pretrained=None,
**args):
super().__init__()
self.img_size = img_size
self.embed_dim = embed_dim
self.patch_embed = PatchEmbed(img_size=img_size,
patch_size=patch_size,
in_chans=in_channels,
embed_dim=embed_dim)
self.pos_w = self.patch_embed.num_patches_in_w
self.pos_h = self.patch_embed.num_patches_in_h
self.pos_embed = self.create_parameter(
shape=(1, self.pos_w * self.pos_h + 1, embed_dim),
default_initializer=paddle.nn.initializer.TruncatedNormal(std=.02))
self.cls_token = self.create_parameter(
shape=(1, 1, embed_dim),
default_initializer=paddle.nn.initializer.Constant(value=0.))
self.pos_drop = nn.Dropout(p=drop_rate)
dpr = np.linspace(0, drop_path_rate, depth)
self.blocks = nn.LayerList([
Block(dim=embed_dim,
num_heads=num_heads,
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
drop=drop_rate,
attn_drop=attn_drop_rate,
drop_path=dpr[i],
norm_layer=norm_layer,
epsilon=epsilon) for i in range(depth)
])
self.final_norm = final_norm
if self.final_norm:
self.norm = eval(norm_layer)(embed_dim, epsilon=epsilon)
self.pretrained = pretrained
self.init_weight()
def init_weight(self):
utils.load_pretrained_model(self, self.pretrained)
# load and resize pos_embed
model_path = self.pretrained
if not os.path.exists(model_path):
model_path = utils.download_pretrained_model(model_path)
load_state_dict = paddle.load(model_path)
model_state_dict = self.state_dict()
pos_embed_name = "pos_embed"
if pos_embed_name in load_state_dict.keys():
load_pos_embed = paddle.to_tensor(load_state_dict[pos_embed_name],
dtype="float32")
if self.pos_embed.shape != load_pos_embed.shape:
pos_size = int(math.sqrt(load_pos_embed.shape[1] - 1))
model_state_dict[pos_embed_name] = self.resize_pos_embed(
load_pos_embed, (pos_size, pos_size),
(self.pos_h, self.pos_w))
self.set_dict(model_state_dict)
logger.info(
"Load pos_embed and resize it from {} to {} .".format(
load_pos_embed.shape, self.pos_embed.shape))
def resize_pos_embed(self, pos_embed, old_hw, new_hw):
"""
Resize pos_embed weight.
Args:
pos_embed (Tensor): the pos_embed weight
old_hw (list[int]): the height and width of old pos_embed
new_hw (list[int]): the height and width of new pos_embed
Returns:
Tensor: the resized pos_embed weight
"""
cls_pos_embed = pos_embed[:, :1, :]
pos_embed = pos_embed[:, 1:, :]
pos_embed = pos_embed.transpose([0, 2, 1])
pos_embed = pos_embed.reshape([1, -1, old_hw[0], old_hw[1]])
pos_embed = F.interpolate(pos_embed,
new_hw,
mode='bicubic',
align_corners=False)
pos_embed = pos_embed.flatten(2).transpose([0, 2, 1])
pos_embed = paddle.concat([cls_pos_embed, pos_embed], axis=1)
return pos_embed
def forward(self, x):
x = self.patch_embed(x)
x_shape = x.shape # b * c * h * w
cls_tokens = self.cls_token.expand((x_shape[0], -1, -1))
x = x.flatten(2).transpose([0, 2, 1]) # b * hw * c
x = paddle.concat([cls_tokens, x], axis=1)
if x.shape[1] == self.pos_embed.shape[1]:
x = x + self.pos_embed
else:
x = x + self.resize_pos_embed(self.pos_embed,
(self.pos_h, self.pos_w), x_shape[2:])
x = self.pos_drop(x)
res = []
for idx, blk in enumerate(self.blocks):
x = blk(x)
if self.final_norm and idx == len(self.blocks) - 1:
x = self.norm(x)
res.append(x[:, 1:, :])
return res, x_shape
@manager.BACKBONES.add_component
def ViT_small_patch16_224(**kwargs):
model = VisionTransformer(patch_size=16,
embed_dim=768,
depth=8,
num_heads=8,
mlp_ratio=3,
qk_scale=768**-0.5,
**kwargs)
return model
@manager.BACKBONES.add_component
def ViT_base_patch16_224(**kwargs):
model = VisionTransformer(patch_size=16,
embed_dim=768,
depth=12,
num_heads=12,
mlp_ratio=4,
qkv_bias=True,
epsilon=1e-6,
**kwargs)
return model
@manager.BACKBONES.add_component
def ViT_base_patch16_384(**kwargs):
model = VisionTransformer(img_size=384,
patch_size=16,
embed_dim=768,
depth=12,
num_heads=12,
mlp_ratio=4,
qkv_bias=True,
epsilon=1e-6,
**kwargs)
return model
@manager.BACKBONES.add_component
def ViT_base_patch32_384(**kwargs):
model = VisionTransformer(img_size=384,
patch_size=32,
embed_dim=768,
depth=12,
num_heads=12,
mlp_ratio=4,
qkv_bias=True,
epsilon=1e-6,
**kwargs)
return model
@manager.BACKBONES.add_component
def ViT_large_patch16_224(**kwargs):
model = VisionTransformer(patch_size=16,
embed_dim=1024,
depth=24,
num_heads=16,
mlp_ratio=4,
qkv_bias=True,
epsilon=1e-6,
**kwargs)
return model
@manager.BACKBONES.add_component
def ViT_large_patch16_384(**kwargs):
model = VisionTransformer(img_size=384,
patch_size=16,
embed_dim=1024,
depth=24,
num_heads=16,
mlp_ratio=4,
qkv_bias=True,
epsilon=1e-6,
**kwargs)
return model
@manager.BACKBONES.add_component
def ViT_large_patch32_384(**kwargs):
model = VisionTransformer(img_size=384,
patch_size=32,
embed_dim=1024,
depth=24,
num_heads=16,
mlp_ratio=4,
qkv_bias=True,
epsilon=1e-6,
**kwargs)
return model
@manager.BACKBONES.add_component
def ViT_huge_patch16_224(**kwargs):
model = VisionTransformer(patch_size=16,
embed_dim=1280,
depth=32,
num_heads=16,
mlp_ratio=4,
**kwargs)
return model
@manager.BACKBONES.add_component
def ViT_huge_patch32_384(**kwargs):
model = VisionTransformer(img_size=384,
patch_size=32,
embed_dim=1280,
depth=32,
num_heads=16,
mlp_ratio=4,
**kwargs)
return model