Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[BUG] Wire label issue in simple circuit with E2E sparse execution #7160

Open
1 task done
isaacdevlugt opened this issue Mar 28, 2025 · 0 comments
Open
1 task done
Labels
bug 🐛 Something isn't working

Comments

@isaacdevlugt
Copy link
Contributor

Expected behavior

The circuit below should run without error.

Actual behavior

Seems like a wire order / label issue.

Additional information

No response

Source code

@qml.qnode(qml.device('default.qubit', wires=2))
def circuit(state, mat):
    qml.StatePrep(state, wires=[0, 1])
    qml.QubitUnitary(mat, wires=[0, 1])
    return qml.expval(qml.Z(0))

state = scipy.sparse.csr_matrix([0, 0, 1, 0])
mat = scipy.sparse.eye(2**2)
circuit(state, mat)

Tracebacks

---------------------------------------------------------------------------
ValueError                                Traceback (most recent call last)
Cell In[9], line 9
      7 state = scipy.sparse.csr_matrix([0, 0, 1, 0])
      8 mat = scipy.sparse.eye(2**2)
----> 9 circuit(state, mat)

File ~/.virtualenvs/pl-master/lib/python3.11/site-packages/pennylane/workflow/qnode.py:881, in QNode.__call__(self, *args, **kwargs)
    878     from ._capture_qnode import capture_qnode  # pylint: disable=import-outside-toplevel
    880     return capture_qnode(self, *args, **kwargs)
--> 881 return self._impl_call(*args, **kwargs)

File ~/.virtualenvs/pl-master/lib/python3.11/site-packages/pennylane/workflow/qnode.py:854, in QNode._impl_call(self, *args, **kwargs)
    851 # Calculate the classical jacobians if necessary
    852 self._transform_program.set_classical_component(self, args, kwargs)
--> 854 res = qml.execute(
    855     (tape,),
    856     device=self.device,
    857     diff_method=self.diff_method,
    858     interface=self.interface,
    859     transform_program=self._transform_program,
    860     gradient_kwargs=self.gradient_kwargs,
    861     **self.execute_kwargs,
    862 )
    863 res = res[0]
    865 # convert result to the interface in case the qfunc has no parameters

File ~/.virtualenvs/pl-master/lib/python3.11/site-packages/pennylane/workflow/execution.py:244, in execute(tapes, device, diff_method, interface, transform_program, grad_on_execution, cache, cachesize, max_diff, device_vjp, postselect_mode, mcm_method, gradient_kwargs, mcm_config, config, inner_transform)
    241 if transform_program.is_informative:
    242     return post_processing(tapes)
--> 244 results = run(tapes, device, config, inner_transform)
    245 return post_processing(results)

File ~/.virtualenvs/pl-master/lib/python3.11/site-packages/pennylane/workflow/run.py:286, in run(tapes, device, config, inner_transform_program)
    282 no_interface_boundary_required = (
    283     config.interface == Interface.NUMPY or config.gradient_method == "backprop"
    284 )
    285 if no_interface_boundary_required:
--> 286     results = inner_execute(tapes)
    287     return results
    289 # TODO: Prune once support for tf-autograph is dropped

File ~/.virtualenvs/pl-master/lib/python3.11/site-packages/pennylane/workflow/run.py:251, in _make_inner_execute.<locals>.inner_execute(tapes)
    248 transformed_tapes, transform_post_processing = inner_transform(tapes)
    250 if transformed_tapes:
--> 251     results = device.execute(transformed_tapes, execution_config=execution_config)
    252 else:
    253     results = ()

File ~/.virtualenvs/pl-master/lib/python3.11/site-packages/pennylane/devices/modifiers/simulator_tracking.py:28, in _track_execute.<locals>.execute(self, circuits, execution_config)
     26 @wraps(untracked_execute)
     27 def execute(self, circuits, execution_config=DefaultExecutionConfig):
---> 28     results = untracked_execute(self, circuits, execution_config)
     29     if isinstance(circuits, QuantumScript):
     30         batch = (circuits,)

File ~/.virtualenvs/pl-master/lib/python3.11/site-packages/pennylane/devices/modifiers/single_tape_support.py:30, in _make_execute.<locals>.execute(self, circuits, execution_config)
     28     is_single_circuit = True
     29     circuits = (circuits,)
---> 30 results = batch_execute(self, circuits, execution_config)
     31 return results[0] if is_single_circuit else results

File ~/.virtualenvs/pl-master/lib/python3.11/site-packages/pennylane/logging/decorators.py:61, in log_string_debug_func.<locals>.wrapper_entry(*args, **kwargs)
     54     s_caller = "::L".join(
     55         [str(i) for i in inspect.getouterframes(inspect.currentframe(), 2)[1][1:3]]
     56     )
     57     lgr.debug(
     58         f"Calling {f_string} from {s_caller}",
     59         **_debug_log_kwargs,
     60     )
---> 61 return func(*args, **kwargs)

File ~/.virtualenvs/pl-master/lib/python3.11/site-packages/pennylane/devices/default_qubit.py:717, in DefaultQubit.execute(self, circuits, execution_config)
    707     warnings.warn(
    708         (
    709             "Jitting executions with many circuits may have substantial classical overhead."
   (...)    712         UserWarning,
    713     )
    715 if max_workers is None:
--> 717     return tuple(
    718         _simulate_wrapper(
    719             c,
    720             {
    721                 "rng": self._rng,
    722                 "debugger": self._debugger,
    723                 "interface": interface,
    724                 "state_cache": self._state_cache,
    725                 "prng_key": _key,
    726                 "mcm_method": execution_config.mcm_config.mcm_method,
    727                 "postselect_mode": execution_config.mcm_config.postselect_mode,
    728             },
    729         )
    730         for c, _key in zip(circuits, prng_keys)
    731     )
    733 vanilla_circuits = convert_to_numpy_parameters(circuits)[0]
    734 seeds = self._rng.integers(2**31 - 1, size=len(vanilla_circuits))

File ~/.virtualenvs/pl-master/lib/python3.11/site-packages/pennylane/devices/default_qubit.py:718, in <genexpr>(.0)
    707     warnings.warn(
    708         (
    709             "Jitting executions with many circuits may have substantial classical overhead."
   (...)    712         UserWarning,
    713     )
    715 if max_workers is None:
    717     return tuple(
--> 718         _simulate_wrapper(
    719             c,
    720             {
    721                 "rng": self._rng,
    722                 "debugger": self._debugger,
    723                 "interface": interface,
    724                 "state_cache": self._state_cache,
    725                 "prng_key": _key,
    726                 "mcm_method": execution_config.mcm_config.mcm_method,
    727                 "postselect_mode": execution_config.mcm_config.postselect_mode,
    728             },
    729         )
    730         for c, _key in zip(circuits, prng_keys)
    731     )
    733 vanilla_circuits = convert_to_numpy_parameters(circuits)[0]
    734 seeds = self._rng.integers(2**31 - 1, size=len(vanilla_circuits))

File ~/.virtualenvs/pl-master/lib/python3.11/site-packages/pennylane/devices/default_qubit.py:1051, in _simulate_wrapper(circuit, kwargs)
   1050 def _simulate_wrapper(circuit, kwargs):
-> 1051     return simulate(circuit, **kwargs)

File ~/.virtualenvs/pl-master/lib/python3.11/site-packages/pennylane/logging/decorators.py:61, in log_string_debug_func.<locals>.wrapper_entry(*args, **kwargs)
     54     s_caller = "::L".join(
     55         [str(i) for i in inspect.getouterframes(inspect.currentframe(), 2)[1][1:3]]
     56     )
     57     lgr.debug(
     58         f"Calling {f_string} from {s_caller}",
     59         **_debug_log_kwargs,
     60     )
---> 61 return func(*args, **kwargs)

File ~/.virtualenvs/pl-master/lib/python3.11/site-packages/pennylane/devices/qubit/simulate.py:357, in simulate(circuit, debugger, state_cache, **execution_kwargs)
    354     return tuple(results)
    356 ops_key, meas_key = jax_random_split(prng_key)
--> 357 state, is_state_batched = get_final_state(
    358     circuit, debugger=debugger, prng_key=ops_key, **execution_kwargs
    359 )
    360 if state_cache is not None:
    361     state_cache[circuit.hash] = state

File ~/.virtualenvs/pl-master/lib/python3.11/site-packages/pennylane/logging/decorators.py:61, in log_string_debug_func.<locals>.wrapper_entry(*args, **kwargs)
     54     s_caller = "::L".join(
     55         [str(i) for i in inspect.getouterframes(inspect.currentframe(), 2)[1][1:3]]
     56     )
     57     lgr.debug(
     58         f"Calling {f_string} from {s_caller}",
     59         **_debug_log_kwargs,
     60     )
---> 61 return func(*args, **kwargs)

File ~/.virtualenvs/pl-master/lib/python3.11/site-packages/pennylane/devices/qubit/simulate.py:190, in get_final_state(circuit, debugger, **execution_kwargs)
    188 if isinstance(op, MidMeasureMP):
    189     prng_key, key = jax_random_split(prng_key)
--> 190 state = apply_operation(
    191     op,
    192     state,
    193     is_state_batched=is_state_batched,
    194     debugger=debugger,
    195     prng_key=key,
    196     tape_shots=circuit.shots,
    197     **execution_kwargs,
    198 )
    199 # Handle postselection on mid-circuit measurements
    200 if isinstance(op, qml.Projector):

File /opt/homebrew/Cellar/python@3.11/3.11.11/Frameworks/Python.framework/Versions/3.11/lib/python3.11/functools.py:909, in singledispatch.<locals>.wrapper(*args, **kw)
    905 if not args:
    906     raise TypeError(f'{funcname} requires at least '
    907                     '1 positional argument')
--> 909 return dispatch(args[0].__class__)(*args, **kw)

File ~/.virtualenvs/pl-master/lib/python3.11/site-packages/pennylane/devices/qubit/apply_operation.py:232, in apply_operation(op, state, is_state_batched, debugger, **_)
    166 @singledispatch
    167 def apply_operation(
    168     op: qml.operation.Operator,
   (...)    172     **_,
    173 ):
    174     """Apply and operator to a given state.
    175 
    176     Args:
   (...)    230 
    231     """
--> 232     return _apply_operation_default(op, state, is_state_batched, debugger)

File ~/.virtualenvs/pl-master/lib/python3.11/site-packages/pennylane/devices/qubit/apply_operation.py:253, in _apply_operation_default(op, state, is_state_batched, debugger)
    250 """The default behaviour of apply_operation, accessed through the standard dispatch
    251 of apply_operation, as well as conditionally in other dispatches."""
    252 if op.has_sparse_matrix and not op.has_matrix:
--> 253     return apply_operation_csr_matrix(op, state, is_state_batched=is_state_batched)
    254 if (
    255     len(op.wires) < EINSUM_OP_WIRECOUNT_PERF_THRESHOLD
    256     and math.ndim(state) < EINSUM_STATE_WIRECOUNT_PERF_THRESHOLD
    257 ) or (op.batch_size and is_state_batched):
    258     return apply_operation_einsum(op, state, is_state_batched=is_state_batched)

File ~/.virtualenvs/pl-master/lib/python3.11/site-packages/pennylane/devices/qubit/apply_operation.py:244, in apply_operation_csr_matrix(op, state, is_state_batched)
    242 num_wires = len(original_shape) - int(is_state_batched)
    243 full_state = math.reshape(state, [-1, 2**num_wires])  # expected: [batch_size, 2**num_wires]
--> 244 state_opT = full_state @ op.sparse_matrix(wire_order=range(num_wires)).T
    245 state_reshaped = math.reshape(state_opT, original_shape)
    246 return state_reshaped

File ~/.virtualenvs/pl-master/lib/python3.11/site-packages/pennylane/operation.py:901, in Operator.sparse_matrix(self, wire_order, format)
    879 r"""Representation of the operator as a sparse matrix in the computational basis.
    880 
    881 If ``wire_order`` is provided, the numerical representation considers the position of the
   (...)    895 
    896 """
    897 canonical_sparse_matrix = self.compute_sparse_matrix(
    898     *self.parameters, format="csr", **self.hyperparameters
    899 )
--> 901 return expand_matrix(
    902     canonical_sparse_matrix, wires=self.wires, wire_order=wire_order
    903 ).asformat(format)

File ~/.virtualenvs/pl-master/lib/python3.11/site-packages/pennylane/math/matrix_manipulation.py:145, in expand_matrix(mat, wires, wire_order, sparse_format)
    140     return qml.math.kron(mat1, mat2, like=interface)
    142 # get a subset of `wire_order` values that contain all wire labels inside `wires` argument
    143 # e.g. wire_order = [0, 1, 2, 3, 4]; wires = [3, 0, 2]
    144 # --> subset_wire_order = [0, 1, 2, 3]; expanded_wires = [3, 0, 2, 1]
--> 145 wire_indices = [wire_order.index(wire) for wire in wires]
    146 subset_wire_order = wire_order[min(wire_indices) : max(wire_indices) + 1]
    147 wire_difference = list(set(subset_wire_order) - set(wires))

File ~/.virtualenvs/pl-master/lib/python3.11/site-packages/pennylane/math/matrix_manipulation.py:145, in <listcomp>(.0)
    140     return qml.math.kron(mat1, mat2, like=interface)
    142 # get a subset of `wire_order` values that contain all wire labels inside `wires` argument
    143 # e.g. wire_order = [0, 1, 2, 3, 4]; wires = [3, 0, 2]
    144 # --> subset_wire_order = [0, 1, 2, 3]; expanded_wires = [3, 0, 2, 1]
--> 145 wire_indices = [wire_order.index(wire) for wire in wires]
    146 subset_wire_order = wire_order[min(wire_indices) : max(wire_indices) + 1]
    147 wire_difference = list(set(subset_wire_order) - set(wires))

ValueError: 1 is not in list

System information

Name: PennyLane
Version: 0.41.0.dev60
Summary: PennyLane is a cross-platform Python library for quantum computing, quantum machine learning, and quantum chemistry. Train a quantum computer the same way as a neural network.
Home-page: https://github.com/PennyLaneAI/pennylane
Author: 
Author-email: 
License: Apache License 2.0
Location: /Users/isaac/.virtualenvs/pl-master/lib/python3.11/site-packages
Requires: appdirs, autograd, autoray, cachetools, diastatic-malt, networkx, numpy, packaging, pennylane-lightning, requests, rustworkx, scipy, tomlkit, typing_extensions
Required-by: PennyLane_Lightning

Platform info:           macOS-15.3.2-arm64-arm-64bit
Python version:          3.11.11
Numpy version:           2.2.4
Scipy version:           1.15.2
Installed devices:
- lightning.qubit (PennyLane_Lightning-0.40.0)
- default.clifford (PennyLane-0.41.0.dev60)
- default.gaussian (PennyLane-0.41.0.dev60)
- default.mixed (PennyLane-0.41.0.dev60)
- default.qubit (PennyLane-0.41.0.dev60)
- default.qutrit (PennyLane-0.41.0.dev60)
- default.qutrit.mixed (PennyLane-0.41.0.dev60)
- default.tensor (PennyLane-0.41.0.dev60)
- null.qubit (PennyLane-0.41.0.dev60)
- reference.qubit (PennyLane-0.41.0.dev60)

Existing GitHub issues

  • I have searched existing GitHub issues to make sure the issue does not already exist.
@isaacdevlugt isaacdevlugt added the bug 🐛 Something isn't working label Mar 28, 2025
github-merge-queue bot pushed a commit that referenced this issue Apr 3, 2025
**Context:**

We were improperly preparing sparse states with default qubit.

**Description of the Change:**

Reshapes the state into the proper `[2]*num_wires` form.

**Benefits:**

**Possible Drawbacks:**

**Related GitHub Issues:**

Solves #7160 [sc-87447]

---------

Co-authored-by: Yushao Chen (Jerry) <chenys13@outlook.com>
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
bug 🐛 Something isn't working
Projects
None yet
Development

No branches or pull requests

1 participant