-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsrcgan_train.py
156 lines (123 loc) · 4.85 KB
/
srcgan_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
"""
Author: Viet Nguyen
Date: 2022-09-18
"""
import os
import numpy as np
import itertools
import matplotlib.pyplot as plt
import tensorflow
import warnings
import sys
import torchvision.transforms as transforms
from torchvision.utils import make_grid
from PIL import Image
from torch.utils.data import DataLoader
from torchvision import datasets
from torch.autograd import Variable
import torch.nn as nn
import torch.nn.functional as F
import torch
from torchsummary import summary
import h5py
from vietlib.data import PairedImageDatasetWithLabel
from vietlib.data.transforms import MaskToTensor
from vietlib.model.cgan import Discriminator, GeneratorResNet
from vietlib.model.loss import StructureRetainLoss
from vietlib.model.segment import SobelMultiChannel
from vietlib.model.cnn import ResidualBlock
from vietlib.train import Trainer, save_experiment
from vietlib.utils import check_vscode_interactive
from vietlib.utils.experiment import Experiment_v2
from vietlib.utils.experiment import PROFILE_NAME, Experiment, MLExperiment
from vietlib.utils.image import one_hot_label, show_img
import argparse
from vietlib.train.cgan import CGANTrainer_v2
import torchvision.transforms as transforms
transforms_ = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5])
])
# Create experiment with argeparse
parser = argparse.ArgumentParser()
# Core variables
parser.add_argument("-l", "--log_root_folder", default="../../../logs/dda_pipeline/srcgan")
parser.add_argument("-e", "--experiment_name", default="srcgan_test")
parser.add_argument("-f", "--fold", default=None)
# Training variables
parser.add_argument("--source_domain", default="/data/rit_eyes.h5") # rc folder
parser.add_argument("--target_domain", default="/data/open_eds_real.h5") # rc folder
parser.add_argument("--use_GPU", default=True)
parser.add_argument("--image_height", default=640, type=int)
parser.add_argument("--image_width", default=400, type=int)
parser.add_argument("--batch_size", default=1, type=int)
parser.add_argument("--channel", default=1, type=int)
parser.add_argument("--epochs", default=5, type=int)
parser.add_argument("--n_residual_blocks", default=8, type=int)
parser.add_argument("--n_classes", default=4, type=int)
parser.add_argument("--use_segment", default=False)
parser.add_argument("--valid_step", default=50, type=int)
# CGAN loss
parser.add_argument("--id_loss", default=10, type=float)
parser.add_argument("--cycle_loss", default=10, type=float)
parser.add_argument("--gan_loss", default=1, type=float)
# Sr loss
parser.add_argument("--gamma_edge", default=0, type=float)
parser.add_argument("--gamma_var", default=0, type=float)
parser.add_argument("--gamma_mean", default=0, type=float)
parser.add_argument("--alpha", default=0.5, type=float)
parser.add_argument("--beta", default=0.5, type=float)
parser.add_argument("--edge_threshold", default=0.3, type=float)
parser.add_argument("--lr", default=0.0001, type=float)
parser.add_argument("--starting_hidden_neuron", default=32, type=int)
# parse args
if check_vscode_interactive():
args = parser.parse_args([])
else:
args = parser.parse_args()
# Device setup
if args.use_GPU and torch.cuda.is_available():
device=torch.device("cuda")
else:
device=torch.device("cpu")
# Load experiment
E = Experiment_v2(args.log_root_folder, args.experiment_name, fold=args.fold)
E.on_experiment_start(args)
# data (img)
img_height = E.config.image_height
img_width = E.config.image_width
channels = E.config.channel
input_shape = (channels, img_height, img_width)
# training
n_epochs = E.config.epochs # number of epochs of training
batch_size = E.config.batch_size # size of the batches
b1 = 0.5 # adam : decay of first order momentum of gradient
b2 = 0.999 # adam : decay of first order momentum of gradient
n_residual_blocks = E.config.n_residual_blocks
G_AB = GeneratorResNet(input_shape, E.config.n_classes, n_residual_blocks, use_segment=E.config.use_segment)
G_BA = GeneratorResNet(input_shape, E.config.n_classes, n_residual_blocks, use_segment=E.config.use_segment)
D_A = Discriminator(input_shape)
D_B = Discriminator(input_shape)
summary(G_AB.to(device), input_size=(1, 640, 400))
sobel_img = SobelMultiChannel(1, normalize=True).to(device)
def weights_init_normal(m):
classname = m.__class__.__name__
if classname.find('Conv') != -1:
torch.nn.init.normal_(m.weight.data, 0.0, 0.02)
if hasattr(m, 'bias') and m.bias is not None:
torch.nn.init.constant_(m.bias.data, 0.0)
elif classname.find('BatchNorm2d') != -1:
torch.nn.init.normal_(m.weight.data, 1.0, 0.02)
torch.nn.init.constant_(m.bias.data, 0.0)
G_AB.apply(weights_init_normal)
G_BA.apply(weights_init_normal)
D_A.apply(weights_init_normal)
D_B.apply(weights_init_normal)
cgan = CGANTrainer_v2(
E,
G_AB, G_BA, D_A, D_B,
device,
visualization_step=E.config.valid_step
)
cgan.train(E.config.epochs)
E.on_experiment_end()