-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_ritnet_only.py
185 lines (147 loc) · 5.26 KB
/
train_ritnet_only.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
"""
Author: Viet Nguyen
Date: 2022-11-04
"""
import numpy as np
import os
from tqdm import tqdm
import matplotlib.pyplot as plt
import pandas as pd
import torch
from torch.utils.data import DataLoader
import argparse
from vietlib.utils import check_vscode_interactive, get_nparams, mIoU_segment, mIoU_v2
from vietlib.train.trainer import RITnetTrainer_v2
from vietlib.utils.experiment import CVExperiment, Experiment_v2
from vietlib.model.segment import DenseMobileNet2D_2, DenseMobileNet2D, DenseNet2D
from vietlib.utils.image import show_img
from vietlib.data.transforms import transform_sequence
from vietlib.data import CVDataset
parser = argparse.ArgumentParser()
parser.add_argument("-l", "--log_root_folder", default="logs/dda_pipeline/pop") # pop2 for the model training after ritnet on openeds
parser.add_argument("-e", "--experiment_name", default="ritnet_7_raw")
parser.add_argument("--n_folds", type=int, default=10)
parser.add_argument("--fold", type=int, default=4)
parser.add_argument("--n_limit", default=None, type=int)
parser.add_argument("--dataset_path", default="/data/open_eds_real.h5")
parser.add_argument("--val_dataset_path", default="/data/open_eds_real.h5")
parser.add_argument("--batch_size", default=4, type=int)
parser.add_argument("--use_lr_scheduler", default=False, action="store_true", help="this is good for training but have to trade for speed so much, only enable when needed")
parser.add_argument("--use_GPU", default=True)
parser.add_argument("--image_height", default=640, type=int)
parser.add_argument("--image_width", default=400, type=int)
parser.add_argument("--n_classes", default=4, type=int)
parser.add_argument("--channel", default=1, type=int)
parser.add_argument("--valid_step", default=100, type=int)
parser.add_argument("--epochs", default=170, type=int)
parser.add_argument("--learning_rate", default=1e-3, type=float)
parser.add_argument("--starting_hidden_neuron", default=32, type=int)
parser.add_argument("--visualization_step_ratio", default=0.05, type=float)
# parse args
if check_vscode_interactive():
args = parser.parse_args([])
else:
args = parser.parse_args()
E = Experiment_v2(args.log_root_folder, args.experiment_name, fold=args.fold)
E.on_experiment_start(args)
# Device setup
if E.config.use_GPU and torch.cuda.is_available():
device=torch.device("cuda")
else:
device=torch.device("cpu")
###### MAIN #####
# Load model based on model name
model = DenseNet2D(channel_size=E.config.starting_hidden_neuron, dropout=True,prob=0.2)
model = model.to(device)
nparams = get_nparams(model)
print(nparams)
# Define optimizers
optimizer = torch.optim.Adam(model.parameters(), lr=E.config.learning_rate)
scheduler = None
if args.use_lr_scheduler:
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, 'min',patience=10, min_lr=0.0001)
train_include_idx = None
val_include_idx = None
fold = args.fold
n_folds = args.n_folds
# Setup kfold
if fold is not None and n_folds is not None:
n_folds = int(n_folds)
fold = int(fold)
train_include_idx = [i for i in range(n_folds)]
del train_include_idx[fold]
val_include_idx = [fold]
## Dataset generation
train_dataset = CVDataset(
E.config.dataset_path,
split="train",
transform=transform_sequence,
n_segments=n_folds,
include_idx=train_include_idx,
data_point_limit=args.n_limit
)
train_loader = DataLoader(train_dataset, batch_size=E.config.batch_size, drop_last=True)
val_dataset = CVDataset(
E.config.dataset_path,
split="validation",
transform=transform_sequence,
n_segments=n_folds,
include_idx=val_include_idx
)
val_loader = DataLoader(val_dataset, batch_size=E.config.batch_size, drop_last=True)
# Training object
trainer = RITnetTrainer_v2(
E,
model,
train_loader=train_loader,
val_dataset=val_dataset,
val_loader=val_loader,
optimizer=optimizer,
scheduler=scheduler,
device=device,
visualization_step=100
)
print("Training ...")
# actual training hapenning
trainer.train(E.config.epochs)
# Export metric stats
total_epochs = args.epochs
iou_bgs = []
iou_scleras = []
iou_irises = []
iou_pupils = []
val_dataset = CVDataset(
E.config.val_dataset_path,
split="validation",
transform=transform_sequence,
n_segments=n_folds,
include_idx=val_include_idx
)
val_loader = DataLoader(val_dataset, batch_size=1, drop_last=True) # it is important to set batch_size to 1 so we can call .item()
for i, batch in enumerate(val_loader):
if i % 50 == 0:
print(f"batch {i}")
with torch.no_grad():
img, label, _, _ = batch
output_device = model(img.to(device))
[iou_bg, iou_sclera, iou_iris, iou_pupil] = mIoU_segment(output_device.cpu(), label, n_unique_labels=4)
iou_bg, iou_sclera, iou_iris, iou_pupil = iou_bg.item(), iou_sclera.item(), iou_iris.item(), iou_pupil.item()
iou_bgs.append(iou_bg)
iou_scleras.append(iou_sclera)
iou_irises.append(iou_iris)
iou_pupils.append(iou_pupil)
miou_bg = np.mean(iou_bgs)
miou_sclera = np.mean(iou_scleras)
miou_iris = np.mean(iou_irises)
miou_pupil = np.mean(iou_pupils)
# Append to df
exp_name = args.experiment_name
df = pd.DataFrame.from_dict({
"exp_name": [exp_name],
"mean_miou_bg": [miou_bg],
"mean_miou_sclera": [miou_sclera],
"mean_miou_iris": [miou_iris],
"mean_miou_pupil": [miou_pupil],
})
csv_path = os.path.join(E.log_directory, "stats.csv")
df.to_csv(csv_path, index=False)