-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathcluster.py
465 lines (403 loc) · 17.2 KB
/
cluster.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
# encoding: utf-8
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from collections import Counter
from collections import OrderedDict
from collections import defaultdict
from itertools import cycle
import logging
import math
import pprint
from matplotlib import pyplot as plt
import numpy as np
from scipy.cluster.hierarchy import cophenet
from scipy.cluster.hierarchy import dendrogram
from scipy.cluster.hierarchy import fcluster
from scipy.cluster.hierarchy import linkage
from scipy.spatial.distance import pdist
from sklearn.metrics import silhouette_score
from sklearn.preprocessing import StandardScaler
from gtp_scores import GTPScores
logger = logging.getLogger(__name__)
class Cluster(object):
def __init__(self, name, gps, samples, max_k):
"""Represents a cluster result on gps and samples.
:param name: to identify the clustering variant
:param gps: graph patterns
:param samples: raw (unscaled!) gtps precision vectors corresp. to gps
:param max_k: max_k used to create clustering and default for
get_labels. Important especially for non hierarchical clustering
methods which need to know it for the actual clustering and not only
when retrieving the labels.
"""
assert len(gps) == len(samples)
self.name = name
self.gps = gps
self.samples = samples
self.max_k = max_k
def get_labels(self, max_k=None):
raise NotImplementedError(
'Cluster.get_labels() needs to be overridden in subclasses.'
)
def get_gp_cluster_labels(self, max_k=None):
labels = self.get_labels(max_k)
gp_cluster_labels = [
(gp, labels[i]) for i, gp in enumerate(self.gps)
]
return gp_cluster_labels
def get_representative_gps_labels(self, max_k=None):
if not max_k:
max_k = self.max_k
return pick_top_gps_per_clusters(
self.get_gp_cluster_labels(max_k), max_per_cluster=1, n=max_k
)
class HierarchicalCluster(Cluster):
def __init__(self, name, gps, samples, max_k,
cluster_hierarchy, cophenet_coeff):
super(HierarchicalCluster, self).__init__(name, gps, samples, max_k)
self.cluster_hierarchy = cluster_hierarchy
self.cophenet_coeff = cophenet_coeff
def get_labels(self, max_k=None):
if not max_k:
max_k = self.max_k
assert max_k > 0
return fcluster(self.cluster_hierarchy, max_k, criterion='maxclust')
def gp_precs_matrix(gps, gtps, plot_sample_len_hist=False):
samples = [
gp.get_gtps_precision_vector(gtps) for gp in gps
]
prec_vec_count = Counter(samples)
logger.info('distinct precision vectors: %d' % len(prec_vec_count))
samples = np.array(samples)
if plot_sample_len_hist:
logger.info(samples.sum(axis=1))
# noinspection PyTypeChecker
plt.hist(np.linalg.norm(samples, ord=0, axis=1)) # != 0
# noinspection PyTypeChecker
plt.hist(np.linalg.norm(samples, ord=1, axis=1)) # sum
plt.show()
return samples
def make_cluster_variants_for_gps_by_precision(
gps,
gtps,
max_k,
variants=None,
plot_dendrograms=False
):
samples = gp_precs_matrix(gps, gtps)
variants = _make_cluster_variants(gps, samples, max_k, variants)
if plot_dendrograms:
plot_cluster_variants_dendrograms(variants)
return variants
def _make_cluster_variants(gps, samples, max_k, variants=None):
res = {}
# TODO: performance: don't recompute hierarchical clusterings for diff max_k
# TODO: include sklearn hierarchical clustering
# model = AgglomerativeClustering()
# model.fit(samples)
# print('clustering results:')
# print('labels:')
# print(model.labels_)
# print('n_leaves:')
# print(model.n_leaves_)
# print('n_components:')
# print(model.n_components_)
# print('children:')
# print(model.children_)
# TODO: include non hierarchical variants
# a difference of 0.2 in cosine similarity is allowed to merge clusters
# model = AffinityPropagation()
# model.fit(samples)
# labels = model.labels_
# core_samples_mask = np.zeros_like(labels, dtype=bool)
# core_samples_mask[model.core_sample_indices_] = True
metrics = ['euclidean', 'cityblock', 'cosine']
methods = [
'single', 'complete', 'weighted', 'average',
'centroid', 'median', 'ward',
]
for scale in ['', 'scaled_']:
ssamples = samples
if scale:
ssamples = StandardScaler().fit_transform(samples)
for metric in metrics:
cdist = pdist(ssamples, metric)
if metric == 'cosine':
# see https://github.com/scipy/scipy/issues/5208
np.clip(cdist, 0, 1, out=cdist)
for method in methods:
name = '%s%s_%s' % (scale, metric, method)
logger.debug('computing clustering %s', name)
try:
if variants and name not in variants:
# could skip earlier but would make code more complex
continue
if method in ['ward', 'centroid', 'median']:
# method needs raw feature vectors in euclidean space
if metric == 'euclidean':
cluster_hierarchy = linkage(ssamples, method=method)
else:
continue
elif method not in [
'single', 'complete', 'weighted', 'average']:
# method needs raw inputs, recompute:
if metric == 'cosine':
# see: https://github.com/scipy/scipy/issues/5208
continue
cluster_hierarchy = linkage(
ssamples, method=method, metric=metric)
else:
cluster_hierarchy = linkage(cdist, method=method)
c, coph_dists = cophenet(cluster_hierarchy, cdist)
res[name] = HierarchicalCluster(
name, gps, samples, max_k, cluster_hierarchy, c)
logger.info('clustering %s computed with c: %0.3f', name, c)
except ValueError:
logger.warning(
'The following exception occurred during clustering '
'with variant %s:\nException:',
name,
exc_info=1, # appends exception to message
)
logger.info('computed %d clustering variants', len(res))
return res
def print_cluster_stats(cluster, samples, max_k=None):
assert isinstance(cluster, Cluster)
labels = cluster.get_labels(max_k)
label_counts = Counter(labels)
print('Estimated number of clusters: %d' % len(label_counts))
print('Cluster distributions (idx, count):')
pprint.pprint(label_counts.most_common())
print("Silhouette Coefficient: %0.3f" % silhouette_score(samples, labels))
for i, l in enumerate(labels, 1):
print('GraphPattern %d: %s' % (i, l))
# for l in sorted(set(labels)):
# print('label %s' % l)
# for i, il in enumerate(labels):
# if il == l:
# print_graph_pattern(result_patterns[i][0], 0)
# print('\n\n\n-------------------\n\n\n')
def plot_cluster_variants_dendrograms(variants):
# dendrogram doesn't make sense for non hierarchical clustering
variants = {
k: v for k, v in variants.items() if isinstance(v, HierarchicalCluster)
}
# get rows and cols in ~4:3 ratio
n = len(variants)
assert n > 0
cols = (4 * n / 3)**.5
rows = int(n // cols)
cols = int(math.ceil(n / rows))
fig, axes = plt.subplots(rows, cols)
for i, (v_name, variant) in enumerate(sorted(variants.items()), 1):
plt.subplot(rows, cols, i)
plt.title(
'%s, c: %.3f' % (v_name, variant.cophenet_coeff)
)
fancy_dendrogram(
variant.cluster_hierarchy,
truncate_mode='lastp',
p=20,
leaf_rotation=45.,
leaf_font_size=8.,
show_contracted=True,
annotate_above=100,
)
for ax in axes.flatten()[n:]:
fig.delaxes(ax)
# plt.tight_layout()
plt.show()
def fancy_dendrogram(*args, **kwargs):
max_d = kwargs.pop('max_d', None)
if max_d and 'color_threshold' not in kwargs:
kwargs['color_threshold'] = max_d
annotate_above = kwargs.pop('annotate_above', 0)
ddata = dendrogram(*args, **kwargs)
if not kwargs.get('no_plot', False):
plt.xlabel('sample index or (cluster size)')
plt.ylabel('distance')
for i, d, c in zip(
ddata['icoord'], ddata['dcoord'], ddata['color_list']):
x = 0.5 * sum(i[1:3])
y = d[1]
if y > annotate_above:
plt.plot(x, y, 'o', c=c)
plt.annotate("%.3g" % y, (x, y), xytext=(0, -5),
textcoords='offset points',
va='top', ha='center')
if max_d:
plt.axhline(y=max_d, c='k')
return ddata
def pick_top_gps_per_clusters(
gp_cluster_labels, max_per_cluster=None, n=None):
"""Picks from ordered patterns but round robins through clusters.
Useful for example to pick from patterns ordered by desc fitness but rotate
through clusters before picking very similar patterns.
:param gp_cluster_labels: List of (gp, cluster_label). cluster_labels
should be ints >= 0. Negative cluster_labels are interpreted as a rest
class cluster as returned by DBSCAN.
:param max_per_cluster: (optional) can be given to restrict returned gps per
cluster. Again negative cluster_labels aren't affected by this.
:param n: (optional) max desired length.
:return: List of (gp, cluster_label) pairs.
"""
assert max_per_cluster is None or max_per_cluster > 0
res = []
round_ = 1
clusters_seen_in_round = set()
backlog = list(gp_cluster_labels)
if n is None:
n = len(backlog)
backlog.append((None, None)) # stop element
while len(res) < n and backlog:
gp, label = item = backlog[0]
backlog = backlog[1:]
if item == (None, None):
round_ += 1
clusters_seen_in_round = set()
if backlog:
# still other items (non stop element) in backlog
backlog.append(item)
else:
break
elif label in clusters_seen_in_round:
# shift to next round
if max_per_cluster is None or max_per_cluster > round_:
backlog.append(item)
else:
# found the next item
res.append(item)
if label >= 0:
clusters_seen_in_round.add(label)
return res
def expected_precision_loss_by_query_reduction(
gps, gtps, max_ks, gtp_scores,
variants=None,
plot_precision_losses_over_k=False):
"""Calculates the expected precision loss for k requests on training set.
As the amount of found graph patterns `gps` to cover a given ground truth
pair list `gtps` can be quite long and a lot of those patterns can be very
similar to each other wrt. information gain, it might be desirable to make
less than `len(gps)` requests when predicting. This method evaluates the
lost overall score on our training data set `gtps` when reducing the amount
of queries down to `max_k`. We try to be smart about the reduction by
clustering the given `gps` by similarity and picking the best representative
pattern in each cluster in order to retain as much of the overall
information gains of the different queries (maximising variability).
We already use a multitude of clustering methods as they behave quite
different, but the list obviously can be expanded (also to non clustering
algorithms). Also picking the "fittest" pattern as cluster representative
might not be the best solution in all cases.
We're dealing with an optimization variant of the NP-complete set cover
problem here.
:param gps: graph pattern list as returned by `find_graph_pattern_coverage`,
just without the run number
:param gtps: list of ground truth pairs used for training
:param max_ks: list of possible `max_k` values for which we run the query
reduction variants
:param gtp_scores: as returned by `find_graph_pattern_coverage` to calculate
the maximally possible score and the losses
:param variants: list of reduction variants or `None` (default) for all
:param plot_precision_losses_over_k: if set, will show a plot of decreasing
precision loss over increasing `max_k`
:return: `variant_max_k_prec_loss_reps`: nested dict like, indexed with the
variant name and `max_k` (OrderedDict). Something like this:
variant_max_k_prec_loss_reps[variant_name][k] = (prec_loss, reps)
"""
max_score = gtp_scores.score
variant_max_k_prec_loss_reps = defaultdict(OrderedDict)
for max_k in max_ks:
# TODO: try other (non clustering) algorithms to improve set coverage
# TODO: picking fittest representative might be non-optimal solution
cluster_variants = make_cluster_variants_for_gps_by_precision(
gps, gtps, max_k, variants=variants)
for cv_name, cv in sorted(cluster_variants.items()):
gp_rep_labels = cv.get_representative_gps_labels()
gp_reps = [gp for gp, _ in gp_rep_labels]
cluster_gtp_scores = GTPScores(gtps)
all_gtp_precisions = defaultdict(list)
for gp in gp_reps:
for gtp, gtp_precision in gp.gtp_precisions.items():
all_gtp_precisions[gtp] += [gtp_precision]
for gtp, precs in all_gtp_precisions.items():
cluster_gtp_scores.gtp_max_precisions[gtp] = max(precs)
lost_precision = gtp_scores - cluster_gtp_scores
logger.debug(
'Precision loss for max %d requests in clustering %s: %0.3f',
max_k, cv_name, lost_precision
)
variant_max_k_prec_loss_reps[cv_name][max_k] = (
lost_precision / max_score, gp_reps)
log_msg = ['Best clusterings (least precision loss) per k requests:']
for k in max_ks:
log_msg += ['k = %d:' % k]
tops = sorted([
(ploss_reps[k][0], cn)
for cn, ploss_reps in variant_max_k_prec_loss_reps.items()
])[:5]
log_msg += [' %0.3f %s' % (pl, cn) for pl, cn in tops]
logger.info('\n'.join(log_msg))
log_msg = ['Precision losses by clustering:']
line_style_cycler = cycle(["-", "--", "-.", ":"])
for cv_name, k_ploss_reps in sorted(variant_max_k_prec_loss_reps.items()):
log_msg += [cv_name]
for k, (prec_loss, _) in k_ploss_reps.items():
log_msg += [' max_k: %3d, loss: %0.3f' % (k, prec_loss)]
if plot_precision_losses_over_k:
plt.plot(
[0] + max_ks,
[1.] + [ploss for ploss, _ in k_ploss_reps.values()],
next(line_style_cycler),
label=cv_name
)
logger.info('\n'.join(log_msg))
if plot_precision_losses_over_k:
plt.xlabel('requests')
plt.ylabel('precision loss ratio')
plt.legend()
plt.show()
return variant_max_k_prec_loss_reps
def select_best_variant(variant_max_k_prec_loss_reps, log_top_k=1):
top_vars = sorted([
(prec_loss, k, var_name, reps)
for var_name, k_ploss_reps in variant_max_k_prec_loss_reps.items()
for k, (prec_loss, reps) in k_ploss_reps.items()
])[:log_top_k]
prec_loss, k, vn, reps = top_vars[0]
msg = (
'selected query reduction variant: '
'(you can manually select it with --clustering_variant=%s)\n'
' -> precision loss: %0.3f with %d queries: %s' % (
vn, prec_loss, k, vn
)
)
if log_top_k > 1:
msg += '\nbetter than these follow-ups:\n' + '\n'.join([
' precision loss: %0.3f with %d queries: %s' % (_pl, _k, _vn)
for _pl, _k, _vn, _ in top_vars[1:]
])
logger.info(msg)
return prec_loss, k, vn, reps
def cluster_gps_to_reduce_queries(
gps, max_queries, gtp_scores, clustering_variant=None):
if 0 < max_queries < len(gps):
logger.info(
'reducing amount of queries from %d down to %d ...',
len(gps), max_queries
)
gtps = gtp_scores.ground_truth_pairs
var_max_k_prec_loss_reps = expected_precision_loss_by_query_reduction(
gps, gtps, [max_queries], gtp_scores,
variants=[clustering_variant] if clustering_variant else None,
)
prec_loss, k, vn, reps = select_best_variant(var_max_k_prec_loss_reps)
logger.info(
'reduced number of queries from %d to %d\n'
'used variant: %s\n'
'expected precision sum loss ratio: %0.3f \n'
'(precision sum loss: %.2f)',
len(gps), len(reps), vn, prec_loss, prec_loss * gtp_scores.score
)
gps = reps
return gps