-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathGRNN.py
132 lines (126 loc) · 7.15 KB
/
GRNN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import time, datetime
from tqdm import tqdm
import matplotlib.pyplot as plt
from utils import *
from Generator.model import Generator
from TFLogger.logger import TFLogger
from Backbone import *
torch.set_default_tensor_type('torch.cuda.FloatTensor')
def main():
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = "0,1"
device0 = 0 # for GRNN training
device1 = 1 # for local training, if you have only one GPU, please set device1 to 0
batchsize = 1
save_img = True # whether same generated image and its relevant true image
Iteration = 1000 # how many optimization steps on GRNN
num_exp = 10 # experiment number
g_in = 128 # dimention of GRNN input
plot_num = 30
net_name = 'lenet' # global model
net_name_set = ['lenet', 'res18']
dataset = 'lfw'
dataset_set = ['mnist', 'cifar100', 'lfw', 'VGGFace', 'ilsvrc']
shape_img = (32, 32)
root_path = os.path.abspath(os.curdir)
data_path = os.path.join(root_path, 'Data/')
save_path = os.path.join(root_path, f"Results/GRNN-{net_name}-{dataset}-S{shape_img[0]}-B{str(batchsize).zfill(3)}-{datetime.datetime.now().strftime('%Y%m%d-%H%M%S')}/") # path to saving results
print('>' * 10, save_path)
save_img_path = os.path.join(save_path, 'saved_img/')
dst, num_classes= gen_dataset(dataset, data_path, shape_img) # read local data
tp = transforms.Compose([transforms.ToPILImage()])
train_loader = iter(torch.utils.data.DataLoader(dst, batch_size=batchsize, shuffle=True))
criterion = nn.CrossEntropyLoss().cuda(device1)
print(f'{str(time.strftime("[%Y-%m-%d %H:%M:%S]", time.localtime()))}: {save_path}')
for idx_net in range(num_exp):
train_tfLogger = TFLogger(f'{save_path}/tfrecoard-exp-{str(idx_net).zfill(2)}') # tensorboard record
print(f'{str(time.strftime("[%Y-%m-%d %H:%M:%S]", time.localtime()))}: running {idx_net+1}|{num_exp} experiment')
if net_name == 'lenet':
net = LeNet(num_classes=num_classes)
elif net_name == 'res18':
net = ResNet18(num_classes=num_classes)
net = net.cuda(device1)
Gnet = Generator(num_classes, channel=3, shape_img=shape_img[0],
batchsize=batchsize, g_in=g_in).cuda(device0)
net.apply(weights_init)
Gnet.weight_init(mean=0.0, std=0.02)
G_optimizer = torch.optim.RMSprop(Gnet.parameters(), lr=0.0001, momentum=0.99)
tv_loss = TVLoss()
gt_data,gt_label = next(train_loader)
gt_data, gt_label = gt_data.cuda(device1), gt_label.cuda(device1) # assign to device1 to generate true graident
pred = net(gt_data)
y = criterion(pred, gt_label)
dy_dx = torch.autograd.grad(y, net.parameters()) # obtain true gradient
flatten_true_g = flatten_gradients(dy_dx)
G_ran_in = torch.randn(batchsize, g_in).cuda(device0) # initialize GRNN input
iter_bar = tqdm(range(Iteration),
total=Iteration,
desc=f'{str(time.strftime("[%Y-%m-%d %H:%M:%S]", time.localtime()))}',
ncols=180)
history = []
history_l = []
for iters in iter_bar: # start optimizing GRNN
Gout, Glabel = Gnet(G_ran_in) # produce recovered data
Gout, Glabel = Gout.cuda(device1), Glabel.cuda(device1) # assign to device1 as global model's input to generate fake gradient
Gpred = net(Gout)
Gloss = - torch.mean(torch.sum(Glabel * torch.log(torch.softmax(Gpred, 1)), dim=-1)) # cross-entropy loss
G_dy_dx = torch.autograd.grad(Gloss, net.parameters(), create_graph=True) # obtain fake gradient
flatten_fake_g = flatten_gradients(G_dy_dx).cuda(device1)
grad_diff_l2 = loss_f('l2', flatten_fake_g, flatten_true_g, device1)
grad_diff_wd = loss_f('wd', flatten_fake_g, flatten_true_g, device1)
if net_name == 'lenet':
tvloss = 1e-3 * tv_loss(Gout)
elif net_name == 'res18':
tvloss = 1e-6 * tv_loss(Gout)
grad_diff = grad_diff_l2 + grad_diff_wd + tvloss # loss for GRNN
G_optimizer.zero_grad()
grad_diff.backward()
G_optimizer.step()
iter_bar.set_postfix(loss_l2 = np.round(grad_diff_l2.item(), 8),
loss_wd=np.round(grad_diff_wd.item(), 8),
loss_tv = np.round(tvloss.item(), 8),
img_mses=round(torch.mean(abs(Gout-gt_data)).item(), 8),
img_wd=round(wasserstein_distance(Gout.view(1,-1), gt_data.view(1,-1)).item(), 8))
train_tfLogger.scalar_summary('g_l2', grad_diff_l2.item(), iters)
train_tfLogger.scalar_summary('g_wd', grad_diff_wd.item(), iters)
train_tfLogger.scalar_summary('g_tv', tvloss.item(), iters)
train_tfLogger.scalar_summary('img_mses', torch.mean(abs(Gout-gt_data)).item(), iters)
train_tfLogger.scalar_summary('img_wd', wasserstein_distance(Gout.view(1,-1), gt_data.view(1,-1)).item(), iters)
train_tfLogger.scalar_summary('toal_loss', grad_diff.item(), iters)
if iters % int(Iteration / plot_num) == 0:
history.append([tp(Gout[imidx].detach().cpu()) for imidx in range(batchsize)])
history_l.append([Glabel.argmax(dim=1)[imidx].item() for imidx in range(batchsize)])
torch.cuda.empty_cache()
del Gloss, G_dy_dx, flatten_fake_g, grad_diff_l2, grad_diff_wd, grad_diff, tvloss
# visualization
for imidx in range(batchsize):
plt.figure(figsize=(12, 8))
plt.subplot(plot_num//10, 10, 1)
plt.imshow(tp(gt_data[imidx].cpu()))
for i in range(min(len(history), plot_num-1)):
plt.subplot(plot_num//10, 10, i + 2)
plt.imshow(history[i][imidx])
plt.title('l=%d' % (history_l[i][imidx]))
# plt.title('i=%d,l=%d' % (history_iters[i], history_l[i][imidx]))
plt.axis('off')
if not os.path.exists(save_path):
os.makedirs(save_path)
if save_img:
true_path = os.path.join(save_img_path, f'true_data/exp{str(idx_net).zfill(3)}/')
fake_path = os.path.join(save_img_path, f'fake_data/exp{str(idx_net).zfill(3)}/')
if not os.path.exists(true_path) or not os.path.exists(fake_path):
os.makedirs(true_path)
os.makedirs(fake_path)
tp(gt_data[imidx].cpu()).save(os.path.join(true_path, f'{imidx}_{gt_label[imidx].item()}.png'))
history[-1][imidx].save(os.path.join(fake_path, f'{imidx}_{Glabel.argmax(dim=1)[imidx].item()}.png'))
plt.savefig(save_path + '/exp:%03d-imidx:%02d-tlabel:%d-Glabel:%d.png' % (idx_net,imidx , gt_label[imidx].item(),Glabel.argmax(dim=1)[imidx].item()))
plt.close()
del Glabel, Gout, flatten_true_g, G_ran_in, net, Gnet
torch.cuda.empty_cache()
history.clear()
history_l.clear()
iter_bar.close()
train_tfLogger.close()
print('----------------------')
if __name__ == '__main__':
main()