-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy path03_1_best_models_comparison.py
140 lines (116 loc) · 3.47 KB
/
03_1_best_models_comparison.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
# ---
# jupyter:
# jupytext:
# formats: ipynb,py:percent
# text_representation:
# extension: .py
# format_name: percent
# format_version: '1.3'
# jupytext_version: 1.16.2
# kernelspec:
# display_name: Python 3
# language: python
# name: python3
# ---
# %%
import logging
from pathlib import Path
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
import pimmslearn.nb
import pimmslearn.pandas
import pimmslearn.plotting
from pimmslearn.logging import setup_logger
logger = setup_logger(logger=logging.getLogger('pimmslearn'), level=10)
plt.rcParams['figure.figsize'] = [4.0, 2.0]
pimmslearn.plotting.make_large_descriptors(7)
# %%
IDX = [['proteinGroups', 'peptides', 'evidence'],
['CF', 'DAE', 'VAE']]
REPITITION_NAME = snakemake.params.repitition_name # 'dataset', 'repeat'
metrics_fname = Path(snakemake.input.metrics)
metrics_fname
# %%
FOLDER = metrics_fname.parent
FOLDER
# %%
metrics = pd.read_pickle(metrics_fname)
metrics
# %%
fname = FOLDER / "model_performance_repeated_runs.xlsx"
writer = pd.ExcelWriter(fname)
# %%
split = 'test_fake_na'
selected = metrics.loc[pd.IndexSlice[
split,
:, :]].stack()
selected
# %%
min_max_MAE = (selected
.loc[pd.IndexSlice[:, 'MAE', :]]
.groupby('model')
.agg(['min', 'max'])
.stack()
.T
.loc[IDX[0]])
min_max_MAE.to_excel(writer, sheet_name='min_max_MAE')
min_max_MAE
# %%
to_plot = selected.loc[pd.IndexSlice[:, 'MAE', :]]
to_plot = to_plot.stack().unstack(
REPITITION_NAME).T.describe().loc[['mean', 'std']].T.unstack(0)
to_plot = to_plot.loc[IDX[0], pd.IndexSlice[:, IDX[1]]]
to_plot
# %%
logger.setLevel(20) # reset debug
ax = to_plot['mean'].plot.bar(rot=0,
width=.8,
color=pimmslearn.plotting.defaults.color_model_mapping,
yerr=to_plot['std'])
ax.set_xlabel('')
# %%
to_dump = to_plot.swaplevel(1, 0, axis=1).sort_index(axis=1)
to_dump.to_excel(writer, sheet_name='avg')
fname = FOLDER / "model_performance_repeated_runs_avg.csv"
to_dump.to_csv(fname)
# %%
selected = metrics.loc[pd.IndexSlice[
split,
:, 'MAE']].stack(1)
view_long = (selected.stack()
.to_frame('MAE')
.reset_index())
view_long
# %%
# individual points overlaid on bar plot:
# seaborn 12.2
# https://stackoverflow.com/a/69398767/9684872
sns.set_theme(context='paper', ) # font_scale=.8)
sns.set_style("whitegrid")
g = sns.catplot(x="data level", y="MAE", hue='model', data=view_long,
kind="bar",
errorbar="ci", # ! 95% confidence interval bootstrapped (using 1000 draws by default)
edgecolor="black",
errcolor="black",
hue_order=IDX[1],
order=IDX[0],
palette=pimmslearn.plotting.defaults.color_model_mapping,
alpha=0.9,
height=2, # set the height of the figure
aspect=1.8 # set the aspect ratio of the figure
)
# map data to stripplot
g.map(sns.stripplot, 'data level', 'MAE', 'model',
hue_order=IDX[1], order=IDX[0],
palette=pimmslearn.plotting.defaults.color_model_mapping,
dodge=True, alpha=1, ec='k', linewidth=1,
s=2)
fig = g.figure
ax = fig.get_axes()[0]
_ = ax.set_xlabel('')
# %%
pimmslearn.savefig(fig, FOLDER / "model_performance_repeated_runs.pdf", tight_layout=False)
# %%
writer.close()
# %%