-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtext_functions.py
329 lines (256 loc) · 11 KB
/
text_functions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
# Class containing different methods to perform different NLP operations on a given text
import spacy
import nltk
import os
from gensim.models import KeyedVectors
import numpy as np
from nltk.corpus import stopwords
from sklearn.feature_extraction.text import TfidfVectorizer
import string
import math
from scipy import spatial
import matplotlib.pyplot as plt
class text_functions_class:
def __init__(self, text, glove_file):
self.voc_dict = None
self.model = None
self.emb_sums = None
self.distances= None
self.avg_dist= None
self.seg_text = None
self.sent_tokens = None
self.sent_centroids = None
self.stop_words = set(stopwords.words('english'))
self.glove_file = glove_file
self.doc = text
self.all_doc_tokens, self.doc_tokens, self.token_index = self.tokenize_doc(self.doc)
self.voc_words, self.voc_freqs, self.total_freq = self.get_word_stats()
self.clean_sentences, _ = self.get_sentences()
return;
def get_sentences(self):
nlp = spacy.load('en')
doc_sents=nlp(self.doc)
sentences = [sent.string.strip() for sent in doc_sents.sents]
return sentences, doc_sents
def tokenize_doc(self, text):
'''
create voc dictionary containing document words
'''
# [To Do: look into n_grams]
all_doc_tokens = nltk.word_tokenize(text)
doc_tokens = []
token_index = []
for i, w in enumerate(all_doc_tokens):
if not((w in self.stop_words) or (w in string.punctuation)):
doc_tokens.append(w.lower())
# keep track of where each word falls in the original text
token_index.append(i)
return all_doc_tokens, doc_tokens, token_index
def get_word_stats(self):
'''
get the frequency of each unique word (lower case, no stemming) and the sum of all frequencies for all words
'''
voc_words = set(self.doc_tokens)
voc_freqs = dict([(i, self.doc_tokens.count(i)) for i in voc_words])
total_freq = sum(voc_freqs.values())
return voc_words, voc_freqs, total_freq
def delete_word_from_stats(self, word):
'''
get the frequency of each unique word (lower case, no stemming) and the sum of all frequencies for all words
'''
#print("removing ", word, len(self.doc_tokens), len(self.voc_words))
if self.voc_words is not None:
self.doc_tokens = [w for w in self.doc_tokens if w != word]
self.voc_words.remove(word)
self.total_freq = self.total_freq - self.voc_freqs[word]
self.voc_freqs.pop(word, None)
#print("deleted", len(self.doc_tokens), len(self.voc_words))
return ;
def load_language_model(self):
# load the Stanford GloVe model
model = KeyedVectors.load_word2vec_format(self.glove_file, binary=False)
return model
def get_word_embed_and_entropy(self):
'''
Get the embeddings and entropy for each word in the document
note: at this point we are only measuring the entropy of a word from its within document frequency.
Ideally we would use a larger corpus on similar topics as the input documents to get better word entropy measures.
'''
# Load the language model
if self.model is None:
self.model = self.load_language_model();
if self.voc_dict is None:
self.voc_dict = {}
# get word embeddings
id = 0 if (len(self.voc_dict.keys()))==0 else max([self.voc_dict[word]['id'] for word in self.voc_dict.keys()])+1
voc_word_list = self.voc_words.copy()
for word in voc_word_list:
word = word.lower()
if not(word in self.model.vocab):
self.delete_word_from_stats(word)
else:
if not(word in self.voc_dict.keys()):
self.voc_dict[word]={}
self.voc_dict[word]['id'] = id
self.voc_dict[word]['em'] = self.model[word.lower()]
self.voc_dict[word]['entropy']= (self.voc_freqs[word]/self.total_freq)*(-math.log(self.voc_freqs[word]/self.total_freq))
id = id+1
return ;
def get_embedding_sums(self, tokens):
"""
Get weighted sum of embdiings in text
"""
if self.voc_dict is None:
self.get_word_embed_and_entropy()
# calculate embedding vec summs at all points
emb_sums = np.empty([len(tokens), len(tokens)], object)
# calculate first row
i=0
for j in range(i, len(tokens)):
word = tokens[j]
if (j-1)>=0:
emb_sums[i, j] = emb_sums[i, j-1] + (self.voc_dict[word]['em'] * self.voc_dict[word]['entropy'])
else:
emb_sums[i, j] = self.voc_dict[word]['em'] * self.voc_dict[word]['entropy']
for i in range(1, len(tokens)):
for j in range(i, len(tokens)):
emb_sums[i, j] = emb_sums[0, j] - emb_sums[0, i]
self.emb_sums = emb_sums
return self.emb_sums
def get_sentence_tokens(self):
sent_tokens = []
for i, sent in enumerate(self.clean_sentences):
# tokenize sent
_, tokens, _ = self.tokenize_doc(sent)
sent_tokens.append(tokens)
return sent_tokens;
def get_sent_centroids(self):
if (self.sent_tokens == None):
self.sent_tokens = self.get_sentence_tokens()
if self.voc_dict is None:
self.get_word_embed_and_entropy()
sent_centroids = []
for i, tokens in enumerate(self.sent_tokens):
emb_sum = 0
num_words = 0
for word in tokens:
if (word in self.voc_dict.keys()):
emb_sum = emb_sum + (self.voc_dict[word]['em'] * self.voc_dict[word]['entropy'])
num_words += 1
if (num_words > 0):
sent_centroids.append(emb_sum/num_words)
else:
sent_centroids.append(0)
return sent_centroids
def summarize(self):
'''
returns document sentences sorted by cosine distance from the average sentence centroid
'''
min_dist = None
summ_sent_index = -1
if self.voc_dict is None:
self.get_word_embed_and_entropy()
if (self.sent_centroids == None):
self.sent_centroids = self.get_sent_centroids()
sent_distance = np.zeros(len(self.sent_centroids), dtype=np.float64)
avg_centroid = np.average(self.sent_centroids)
for i, centroid in enumerate(self.sent_centroids):
sent_distance[i] = spatial.distance.cosine(centroid, avg_centroid)
return sent_distance, np.argsort(sent_distance)
def get_weighted_dist(self):
'''
calculate the weighted distance between the centroid of a segment and the embeddings in that
segment for all possible segments in the document
distances are weighted by the entropy of the word to give more significance to potentially topical words.
'''
distances = np.empty([len(self.doc_tokens), len(self.doc_tokens)])
if self.emb_sums is None:
self.get_embedding_sums(self.doc_tokens)
# calculate first row
i=0
for j in range(i, len(self.doc_tokens)):
centroid = self.emb_sums[i, j]/(j-i+1)
if (j-1)>=0:
distances[i, j] = distances[i, j-1] + self.voc_dict[self.doc_tokens[j]]['entropy'] *\
spatial.distance.cosine(centroid, self.voc_dict[self.doc_tokens[j]]['em'])
else:
distances[i, j] = self.voc_dict[self.doc_tokens[j]]['entropy'] *\
spatial.distance.cosine(centroid, self.voc_dict[self.doc_tokens[j]]['em'])
for i in range(1, len(self.doc_tokens)):
for j in range(i+1, len(self.doc_tokens)):
distances[i, j] = distances[0, j] - distances[0, i]
self.distances = distances
return self.distances
def get_avg_dist(self):
'''
calculate the average distance over a segment from its centroid.
'''
if self.distances is None:
self.get_weighted_dist()
avg_dist=np.zeros((len(self.doc_tokens), len(self.doc_tokens)))
for i in range(0, len(self.doc_tokens)):
for j in range(i, len(self.doc_tokens)):
avg_dist[i, j] = self.distances[i, j]/(j-i+1)
self.avg_dist = avg_dist
return
def greedy_text_segmentation(self, k):
'''
Using the greedy algorithm to segment the document into k segments.
'''
if self.avg_dist is None:
self.get_avg_dist()
seg_boundary = np.empty(k-1, dtype=int)
end=len(self.doc_tokens)-1
i=0
start=0
split_score = 0
for seg_num in range(k-2, -1, -1):
max_cost= None
#for i in range(start, end):
for j in range(start, end):
split_cost = (self.avg_dist[start,j] + self.avg_dist[j+1,end]) - self.avg_dist[start, end]
# We are looking for a segmentation point that creates segments most unlike
# the full section from start to end point.
if (max_cost is None) or ((split_cost) >= max_cost):
max_cost = split_cost
split_point= j
seg_boundary[seg_num]=split_point
end = split_point
self.seg_boundary = seg_boundary
return self.seg_boundary
def display_text(self, from_index, to_index):
'''
returns text words starting at word number from_index up to and including word number to_index.
Index values start from 0.
output is a string of text.
'''
if to_index is None:
ret_val = str.join(' ', self.all_doc_tokens[from_index:])
else:
ret_val = str.join(' ', self.all_doc_tokens[from_index:to_index+1])
return ret_val
def get_segment_texts(self):
if self.seg_boundary is None:
print("No segment boundaries found!")
else:
start_index = 0
k = len(self.seg_boundary)
seg_text = np.empty(k+1, object)
for i in range(0, k+1):
if (i < len(self.seg_boundary)):
seg_text[i]= self.display_text(start_index, self.token_index[self.seg_boundary[i]])
start_index = self.token_index[self.seg_boundary[i]]+1
else:
seg_text[i] = self.display_text(start_index, None)
self.seg_text = seg_text;
return self.seg_text
def get_segment(self, i):
'''
returns the text of segment number i
'''
res = None
if (self.seg_text is None):
self.get_segment_texts()
if not(self.seg_text is None) and (len(self.seg_text)< i) and (i>=0):
res = self.seg_text[i];
return res