@@ -45,7 +45,7 @@ Contribute your own generative model to `medigan` to increase its visibility, re
45
45
| <sub > Breast Mass </sub > | <sub > mammography </sub > | <sub > dcgan </sub > | <sub > 128x128 </sub > | <sub > [ BCDR] ( https://bcdr.eu/information/about ) </sub > | ![ sample] ( docs/source/_static/samples/00005.png ) | <sub > [ ` 00005_DCGAN_MMG_MASS_ROI ` ] ( https://medigan.readthedocs.io/en/latest/models.html#id1 ) </sub > | <sub >[ Zenodo (6555188)] ( https://doi.org/10.5281/zenodo.6555188 ) </sub > | <sub >[ Szafranowska et al (2022)] ( https://doi.org/10.48550/arXiv.2203.04961 ) </sub > |
46
46
| <sub > Breast Mass </sub > | <sub > mammography </sub > | <sub > wgan-gp </sub > | <sub > 128x128 </sub > | <sub > [ BCDR] ( https://bcdr.eu/information/about ) </sub > | ![ sample] ( docs/source/_static/samples/00006.png ) | <sub > [ ` 00006_WGANGP_MMG_MASS_ROI ` ] ( https://medigan.readthedocs.io/en/latest/models.html#wgangp-mmg-mass-roi ) </sub > | <sub >[ Zenodo (6554713)] ( https://doi.org/10.5281/zenodo.6554713 ) </sub > | <sub >[ Szafranowska et al (2022)] ( https://doi.org/10.48550/arXiv.2203.04961 ) </sub > |
47
47
| <sub > Brain Tumors on Flair, T1, T1c, T2 with Masks </sub > | <sub > brain MRI </sub > | <sub > inpaint GAN </sub > | <sub > 256x256 </sub > | <sub > [ BRATS 2018] ( https://wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=37224922 ) </sub > | ![ sample] ( docs/source/_static/samples/00007_F.png ) <br > ![ sample] ( docs/source/_static/samples/00007_T1.png ) <br > ![ sample] ( docs/source/_static/samples/00007_T1c.png ) <br > ![ sample] ( docs/source/_static/samples/00007_T2.png ) <br > ![ sample] ( docs/source/_static/samples/00007_mask.png ) <br > ![ sample] ( docs/source/_static/samples/00007_grade_mask.png ) | <sub > [ ` 00007_INPAINT_BRAIN_MRI ` ] ( https://medigan.readthedocs.io/en/latest/models.html#inpaint-brain-mri ) </sub > | <sub > [ Zenodo (7041737)] ( https://doi.org/10.5281/zenodo.7041737 ) </sub > | <sub >[ Kim et al (2020)] ( https://doi.org/10.1002/mp.14701 ) </sub > |
48
- | <sub > Breast Mass (Mal/Benign) </sub > | <sub > mammography </sub > | <sub > c-dcgan </sub > | <sub > 128x128 </sub > | <sub > [ CBIS-DDSM] ( https://wiki.cancerimagingarchive.net/display/Public/CBIS-DDSM ) </sub > | ![ sample] ( docs/source/_static/samples/00008.png ) | <sub > [ ` 00008_C-DCGAN_MMG_MASSES ` ] ( https://medigan.readthedocs.io/en/latest/models.html#c-dcgan-mmg-masses ) </sub > | <sub >[ Zenodo (6647349)] ( https://doi.org/10.5281/zenodo.6647349 ) </sub > | |
48
+ | <sub > Breast Mass (Mal/Benign) </sub > | <sub > mammography </sub > | <sub > c-dcgan </sub > | <sub > 128x128 </sub > | <sub > [ CBIS-DDSM] ( https://wiki.cancerimagingarchive.net/display/Public/CBIS-DDSM ) </sub > | ![ sample] ( docs/source/_static/samples/00008.png ) | <sub > [ ` 00008_C-DCGAN_MMG_MASSES ` ] ( https://medigan.readthedocs.io/en/latest/models.html#c-dcgan-mmg-masses ) </sub > | <sub >[ Zenodo (6647349)] ( https://doi.org/10.5281/zenodo.6647349 ) </sub > | < sub > [ Osuala et al (2024) ] ( https://doi.org/10.48550/arXiv.2407.12669 ) </ sub > |
49
49
| <sub > Polyp with Mask </sub > | <sub > endoscopy </sub > | <sub > pggan </sub > | <sub > 256x256 </sub > | <sub > [ HyperKvasir] ( https://osf.io/mh9sj/ ) </sub > | ![ sample] ( docs/source/_static/samples/00009.png ) <br > ![ sample] ( docs/source/_static/samples/00009_mask.png ) | <sub > [ ` 00009_PGGAN_POLYP_PATCHES_W_MASKS ` ] ( https://medigan.readthedocs.io/en/latest/models.html#pggan-polyp-patches-w-masks ) </sub > | <sub >[ Zenodo (6653743)] ( https://doi.org/10.5281/zenodo.6653743 ) </sub > | <sub >[ Thambawita et al (2022)] ( https://doi.org/10.1371/journal.pone.0267976 ) </sub > |
50
50
| <sub > Polyp with Mask </sub > | <sub > endoscopy </sub > | <sub > fastgan </sub > | <sub > 256x256 </sub > | <sub > [ HyperKvasir] ( https://osf.io/mh9sj/ ) </sub > | ![ sample] ( docs/source/_static/samples/00010.png ) <br > ![ sample] ( docs/source/_static/samples/00010_mask.png ) | <sub > [ ` 00010_FASTGAN_POLYP_PATCHES_W_MASKS ` ] ( https://medigan.readthedocs.io/en/latest/models.html#fastgan-polyp-patches-w-masks ) </sub > | <sub >[ Zenodo (6660711)] ( https://doi.org/10.5281/zenodo.6660711 ) </sub > | <sub >[ Thambawita et al (2022)] ( https://doi.org/10.1371/journal.pone.0267976 ) </sub > |
51
51
| <sub > Polyp with Mask </sub > | <sub > endoscopy </sub > | <sub > singan </sub > | <sub > ≈250x250 </sub > | <sub > [ HyperKvasir] ( https://osf.io/mh9sj/ ) </sub > | ![ sample] ( docs/source/_static/samples/00011.png ) <br > ![ sample] ( docs/source/_static/samples/00011_mask.png ) | <sub > [ ` 00011_SINGAN_POLYP_PATCHES_W_MASKS ` ] ( https://medigan.readthedocs.io/en/latest/models.html#singan-polyp-patches-w-masks ) </sub > | <sub >[ Zenodo (6667944)] ( https://doi.org/10.5281/zenodo.6667944 ) </sub > | <sub >[ Thambawita et al (2022)] ( https://doi.org/10.1371/journal.pone.0267976 ) </sub > |
@@ -85,7 +85,7 @@ Documentation is available at [medigan.readthedocs.io](https://medigan.readthedo
85
85
86
86
### Generation example
87
87
#### DCGAN
88
- Create mammography masses with labels (malignant or benign) using a class-conditional DCGAN model.
88
+ Create mammography masses with labels (malignant or benign) using a [ class-conditional DCGAN model] ( https://arxiv.org/abs/2407.12669 ) .
89
89
``` python
90
90
# import medigan and initialize Generators
91
91
from medigan import Generators
@@ -98,7 +98,7 @@ generators.generate(model_id=8, num_samples=8, install_dependencies=True)
98
98
![ sample] ( docs/source/_static/samples/c-dcgan/model8_samples.png )
99
99
100
100
The synthetic images in the top row show malignant masses (breast cancer) while the images in the bottom row show benign masses.
101
- Given such images with class information, image classification models can be (pre-)trained.
101
+ Given such images with class information, [ image classification models] ( https://arxiv.org/abs/2407.12669 ) can be (pre-)trained.
102
102
103
103
104
104
#### CYCLEGAN
0 commit comments