-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdataset.py
378 lines (301 loc) · 12.9 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
import os
import json
from typing import Any
import networkx as nx
import gdown
import pandas as pd
import numpy as np
from numpy.linalg import eigh
from scipy.sparse.linalg import eigsh
import scipy.sparse as sp
import torch
from torch_geometric.data import Data
from torch_geometric.datasets import Planetoid, Actor, WikipediaNetwork
import torch_geometric.transforms as T
from torch_geometric.utils import convert, to_undirected
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
from utils import normalize_adj
class Transd2Ind:
"""transductive setting to inductive setting"""
def __init__(self, data, **kwargs):
n = data.num_nodes
adj = sp.csr_matrix(
(
np.ones(data.edge_index.shape[1]),
(data.edge_index[0], data.edge_index[1]),
),
shape=(n, n),
)
features = data.x
labels = data.y
if len(labels.shape) == 2 and labels.shape[1] == 1:
labels = labels.reshape(-1) # ogb-arxiv needs to reshape
if hasattr(data, "train_mask"):
# for fixed split
idx_train = mask_to_index(data.train_mask, n)
idx_val = mask_to_index(data.val_mask, n)
idx_test = mask_to_index(data.test_mask, n)
if "keep_ratio" in kwargs:
keep_ratio = kwargs["keep_ratio"]
if keep_ratio < 1:
idx_train, _ = train_test_split(
idx_train,
random_state=None,
train_size=keep_ratio,
test_size=1 - keep_ratio,
stratify=labels[idx_train],
)
self.num_nodes = data.num_nodes
self.num_classes = data.num_classes
self.adj_train = adj[np.ix_(idx_train, idx_train)]
self.adj_val = adj[np.ix_(idx_val, idx_val)]
self.adj_test = adj[np.ix_(idx_test, idx_test)]
self.x_train = features[idx_train]
self.x_val = features[idx_val]
self.x_test = features[idx_test]
self.y_train = labels[idx_train]
self.y_val = labels[idx_val]
self.y_test = labels[idx_test]
self.adj_full = adj
self.x_full = features
self.y_full = labels
self.idx_train = idx_train
self.idx_val = idx_val
self.idx_test = idx_test
def cuda(self):
self.x_full = self.x_full.cuda()
self.x_train = self.x_train.cuda()
self.x_val = self.x_val.cuda()
self.x_test = self.x_test.cuda()
self.y_full = self.y_full.cuda()
self.y_train = self.y_train.cuda()
self.y_val = self.y_val.cuda()
self.y_test = self.y_test.cuda()
return self
class DataGraphSAINT:
"""datasets used in GraphSAINT paper"""
def __init__(self, dataset, **kwargs):
dataset_str = "./data/" + dataset + "/"
adj_full = sp.load_npz(dataset_str + "adj_full.npz")
self.num_nodes = adj_full.shape[0]
if dataset == "ogbn-arxiv":
adj_full = adj_full + adj_full.T
adj_full[adj_full > 1] = 1
role = json.load(open(dataset_str + "role.json", "r"))
idx_train = role["tr"]
idx_test = role["te"]
idx_val = role["va"]
if "label_rate" in kwargs:
label_rate = kwargs["label_rate"]
if label_rate < 1:
idx_train = idx_train[: int(label_rate * len(idx_train))]
self.adj_train = adj_full[np.ix_(idx_train, idx_train)]
self.adj_val = adj_full[np.ix_(idx_val, idx_val)]
self.adj_test = adj_full[np.ix_(idx_test, idx_test)]
feat = np.load(dataset_str + "feats.npy")
# ---- normalize feat ----
x_train = feat[idx_train]
scaler = StandardScaler()
scaler.fit(x_train)
feat = scaler.transform(feat)
feat = torch.FloatTensor(feat)
self.x_train = feat[idx_train]
self.x_val = feat[idx_val]
self.x_test = feat[idx_test]
class_map = json.load(open(dataset_str + "class_map.json", "r"))
labels = self.process_labels(class_map)
labels = torch.LongTensor(labels)
self.y_train = labels[idx_train]
self.y_val = labels[idx_val]
self.y_test = labels[idx_test]
self.adj_full = adj_full
self.x_full = feat
self.y_full = labels
self.idx_train = np.array(idx_train)
self.idx_val = np.array(idx_val)
self.idx_test = np.array(idx_test)
def cuda(self):
self.x_full = self.x_full.cuda()
self.x_train = self.x_train.cuda()
self.x_val = self.x_val.cuda()
self.x_test = self.x_test.cuda()
self.y_full = self.y_full.cuda()
self.y_train = self.y_train.cuda()
self.y_val = self.y_val.cuda()
self.y_test = self.y_test.cuda()
return self
def process_labels(self, class_map):
"""setup vertex property map for output classests"""
num_vertices = self.num_nodes
if isinstance(list(class_map.values())[0], list):
num_classes = len(list(class_map.values())[0])
self.num_classes = num_classes
class_arr = np.zeros((num_vertices, num_classes))
for k, v in class_map.items():
class_arr[int(k)] = v
else:
class_arr = np.zeros(num_vertices, dtype=np.int64)
for k, v in class_map.items():
class_arr[int(k)] = v
class_arr = class_arr - class_arr.min()
self.num_classes = max(class_arr) + 1
return class_arr
class NCDataset(object):
def __init__(self, name):
self.data = None
self.name = name
self.num_classes = None
def __getitem__(self, idx):
assert idx == 0
return self.data
class Dataset(object):
def __init__(self, x, y, edge_index, num_nodes):
self.x = x
self.y = y
self.edge_index = edge_index
self.num_nodes = num_nodes
def get_dataset(name, normalize_features=True, transform=None):
path = f"./data/{name}"
if name in ["cora", "citeseer", "pubmed"]:
dataset = Planetoid(path, name)
elif name in ["squirrel"]:
preProcDs = WikipediaNetwork(path, name, False, T.NormalizeFeatures())
dataset = WikipediaNetwork(path, name=name, geom_gcn_preprocess=True, transform=T.NormalizeFeatures())
elif name in ["twitch-gamer"]:
dataset = load_twitch_gamer_dataset(path)
else:
raise NotImplementedError
if transform is not None and normalize_features:
dataset.transform = T.Compose([T.NormalizeFeatures(), transform])
elif normalize_features:
dataset.transform = T.NormalizeFeatures()
elif transform is not None:
dataset.transform = transform
data = dataset[0]
data.num_classes = dataset.num_classes
if name in ["squirrel"]:
data.train_mask, data.val_mask, data.test_mask = torch.load(f"{path}/split.pt")
data.edge_index = preProcDs[0].edge_index
if name in ["twitch-gamer"]:
data.train_mask, data.val_mask, data.test_mask = torch.load(f"{path}/split.pt")
return data
def load_twitch_gamer_dataset(path, task="mature", normalize=True):
dataset_drive_url = {
'twitch-gamer_feat' : '1fA9VIIEI8N0L27MSQfcBzJgRQLvSbrvR',
'twitch-gamer_edges' : '1XLETC6dG3lVl7kDmytEJ52hvDMVdxnZ0'}
if not os.path.exists(f'{path}/twitch-gamer_feat.csv'):
gdown.download(id=dataset_drive_url['twitch-gamer_feat'],
output=f'{path}/twitch-gamer_feat.csv', quiet=False)
if not os.path.exists(f'{path}/twitch-gamer_edges.csv'):
gdown.download(id=dataset_drive_url['twitch-gamer_edges'],
output=f'{path}/twitch-gamer_edges.csv', quiet=False)
edges = pd.read_csv(f'{path}/twitch-gamer_edges.csv')
nodes = pd.read_csv(f'{path}/twitch-gamer_feat.csv')
edge_index = torch.tensor(edges.to_numpy()).t().type(torch.LongTensor)
edge_index = to_undirected(edge_index)
num_nodes = len(nodes)
label, features = load_twitch_gamer(nodes, task)
node_feat = torch.tensor(features, dtype=torch.float)
if normalize:
node_feat = node_feat - node_feat.mean(dim=0, keepdim=True)
node_feat = node_feat / node_feat.std(dim=0, keepdim=True)
label = torch.tensor(label, dtype=torch.int64)
dataset = NCDataset("twitch-gamer")
dataset.data = Dataset(x=node_feat, y=label, edge_index=edge_index, num_nodes=num_nodes)
dataset.num_classes = dataset.data.y.max().item() + 1
return dataset
def load_twitch_gamer(nodes, task="dead_account"):
nodes = nodes.drop('numeric_id', axis=1)
nodes['created_at'] = nodes.created_at.replace('-', '', regex=True).astype(int)
nodes['updated_at'] = nodes.updated_at.replace('-', '', regex=True).astype(int)
one_hot = {k: v for v, k in enumerate(nodes['language'].unique())}
lang_encoding = [one_hot[lang] for lang in nodes['language']]
nodes['language'] = lang_encoding
if task is not None:
label = nodes[task].to_numpy()
features = nodes.drop(task, axis=1).to_numpy()
return label, features
def index_to_mask(index, num_nodes):
mask = torch.zeros(num_nodes, dtype=torch.bool)
mask[index] = 1
return mask
def get_largest_cc(adj, num_nodes, data_name):
mx = (adj).tocoo()
edge_index = torch.LongTensor(np.vstack([mx.row, mx.col]))
data = Data(edge_index=edge_index, num_nodes=num_nodes)
nx_graph = convert.to_networkx(data, to_undirected=True)
largest_cc = max(nx.connected_components(nx_graph), key=len)
idx_lcc = list(largest_cc)
largest_cc_graph = nx_graph.subgraph(largest_cc)
if len(idx_lcc) == num_nodes:
adj_lcc = adj
adj_norm_lcc = normalize_adj(adj_lcc)
else:
adj_lcc = nx.to_scipy_sparse_array(largest_cc_graph)
adj_norm_lcc = normalize_adj(adj_lcc)
return idx_lcc, adj_norm_lcc, adj_lcc
def mask_to_index(index, size):
all_idx = np.arange(size)
return all_idx[index]
def load_eigen(dataset):
dir = "./data/" + dataset + "/"
val_file_name = "eigenvalues.npy"
vec_file_name = "eigenvectors.npy"
eigvals_path = os.path.join(dir, val_file_name)
eigvecs_path = os.path.join(dir, vec_file_name)
eigenvalues = np.load(eigvals_path)
eigenvectors = np.load(eigvecs_path)
if dataset in [ 'ogbn-arxiv', 'flickr', 'reddit', 'twitch-gamer']:
val_file_name = "eigenvalues_la.npy"
vec_file_name = "eigenvectors_la.npy"
eigvals_path = os.path.join(dir, val_file_name)
eigvecs_path = os.path.join(dir, vec_file_name)
eigenvalues_la = np.load(eigvals_path)
eigenvectors_la = np.load(eigvecs_path)
eigenvalues = np.hstack([eigenvalues, eigenvalues_la])
eigenvectors = np.hstack([eigenvectors, eigenvectors_la])
idx = np.argsort(eigenvalues)
eigenvalues = eigenvalues[idx[:]]
eigenvectors = eigenvectors[:, idx[:]]
return eigenvalues, eigenvectors
def get_eigh(laplacian_matrix, data_name, save=True):
dir = "./data/" + data_name + "/"
if not os.path.isdir(dir):
os.makedirs(dir)
val_file_name = "eigenvalues.npy"
vec_file_name = "eigenvectors.npy"
eigvals_path = os.path.join(dir, val_file_name)
eigvecs_path = os.path.join(dir, vec_file_name)
if os.path.exists(eigvals_path) and os.path.exists(eigvecs_path):
eigenvalues = np.load(eigvals_path)
eigenvectors = np.load(eigvecs_path)
else:
if data_name in [ 'ogbn-arxiv', 'flickr', 'reddit', 'twitch-gamer']:
eigenvalues, eigenvectors = eigsh(A=laplacian_matrix, k=1000, which="SA", tol=1e-5)
else:
if sp.issparse(laplacian_matrix):
laplacian_matrix = laplacian_matrix.todense()
eigenvalues, eigenvectors = eigh(laplacian_matrix)
if save:
np.save(eigvals_path, eigenvalues)
np.save(eigvecs_path, eigenvectors)
if data_name in [ 'ogbn-arxiv', 'flickr', 'reddit', 'twitch-gamer']:
val_file_name = "eigenvalues_la.npy"
vec_file_name = "eigenvectors_la.npy"
eigvals_path = os.path.join(dir, val_file_name)
eigvecs_path = os.path.join(dir, vec_file_name)
if os.path.exists(eigvals_path) and os.path.exists(eigvecs_path):
eigenvalues_la = np.load(eigvals_path)
eigenvectors_la = np.load(eigvecs_path)
else:
eigenvalues_la, eigenvectors_la = eigsh(A=laplacian_matrix, k=1000, which="LA", tol=1e-5)
if save:
np.save(eigvals_path, eigenvalues_la)
np.save(eigvecs_path, eigenvectors_la)
eigenvalues = np.hstack([eigenvalues, eigenvalues_la])
eigenvectors = np.hstack([eigenvectors, eigenvectors_la])
idx = np.argsort(eigenvalues)
eigenvalues = eigenvalues[idx[:]]
eigenvectors = eigenvectors[:, idx[:]]
return eigenvalues, eigenvectors