-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathroberta_base.py
414 lines (360 loc) · 15.1 KB
/
roberta_base.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
import json
import os
import time
import unicodedata
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from pytorch_pretrained_bert import BertModel, BertTokenizer
from torch.utils.data import DataLoader, Dataset
from tqdm import tqdm
train_l = []
val_f1_r = []
def record():
f1 = open("record/val_f1_1e4.txt","w")
f2 = open("record/loss_1e4.txt",'w')
for i in range(len(train_l)):
f1.write(str(val_f1_r[i])+"\n")
f2.write(str(train_l[i])+"\n")
f1.close()
f2.close()
os.environ['CUDA_LAUNCH_BLOCKING'] = "1"
BERT_PATH = "chinese_roberta_wwm_ext_pytorch/"
maxlen = 256
# 读取json文件,即输入text及对应spo格式
def load_data(filename):
D = []
with open(filename, encoding='utf-8') as f:
for l in tqdm(f):
l = json.loads(l)
d = {'text': l['text'], 'spo_list': []}
for spo in l['spo_list']:
for k, v in spo['object'].items():
d['spo_list'].append(
(spo['subject'], spo['predicate'], v)
)
D.append(d)
return D
# 加载数据集
train_data = load_data('CMeIE/CMeIE_train.json')
valid_data = load_data('CMeIE/CMeIE_dev.json')
def search(pattern, sequence):
"""从sequence中寻找子串pattern
如果找到,返回第一个下标;否则返回-1。
"""
n = len(pattern)
for i in range(len(sequence)):
if sequence[i:i + n] == pattern:
return i
return -1
train_data_new = [] # 创建新的训练集,把结束位置超过250的文本去除,可见并没有去除多少
for data in tqdm(train_data):
flag = 1
for s, p, o in data['spo_list']:
s_begin = search(s, data['text'])
o_begin = search(o, data['text'])
if s_begin == -1 or o_begin == -1 or s_begin + len(s) > 250 or o_begin + len(o) > 250:
flag = 0
break
if flag == 1:
train_data_new.append(data)
print(len(train_data_new))
# 读取schema
with open('CMeIE/schema.json', encoding='utf-8') as f:
id2predicate, predicate2id, n = {}, {}, 0
predicate2type = {}
for l in f:
l = json.loads(l)
predicate2type[l['predicate']] = (l['subject_type'], l['object_type'])
key = l['predicate']
if key not in predicate2id:
id2predicate[n] = key
predicate2id[key] = n
n += 1
print(len(predicate2id))
class OurTokenizer(BertTokenizer):
def tokenize(self, text):
R = []
for c in text:
if c in self.vocab:
R.append(c)
elif self._is_whitespace(c):
R.append('[unused1]')
else:
R.append('[UNK]')
return R
def _is_whitespace(self, char):
if char == " " or char == "\t" or char == "\n" or char == "\r":
return True
cat = unicodedata.category(char)
if cat == "Zs":
return True
return False
# 初始化分词器
tokenizer = OurTokenizer(vocab_file=BERT_PATH + "vocab.txt")
class TorchDataset(Dataset):
def __init__(self, data):
self.data = data
def __getitem__(self, i):
t = self.data[i]
x = tokenizer.tokenize(t['text'])
x = ["[CLS]"] + x + ["[SEP]"]
token_ids = tokenizer.convert_tokens_to_ids(x)
seg_ids = [0] * len(token_ids)
assert len(token_ids) == len(t['text'])+2
spoes = {}
for s, p, o in t['spo_list']:
s = tokenizer.tokenize(s)
s = tokenizer.convert_tokens_to_ids(s)
p = predicate2id[p] # 关系id
o = tokenizer.tokenize(o)
o = tokenizer.convert_tokens_to_ids(o)
s_idx = search(s, token_ids) # subject起始位置
o_idx = search(o, token_ids) # object起始位置
if s_idx != -1 and o_idx != -1:
s = (s_idx, s_idx + len(s) - 1)
o = (o_idx, o_idx + len(o) - 1, p) # 同时预测o和p
if s not in spoes:
spoes[s] = [] # 可以一个subject多个object
spoes[s].append(o)
if spoes:
sub_labels = np.zeros((len(token_ids), 2))
for s in spoes:
sub_labels[s[0], 0] = 1
sub_labels[s[1], 1] = 1
# 随机选一个subject
start, end = np.array(list(spoes.keys())).T
start = np.random.choice(start)
end = sorted(end[end >= start])[0]
sub_ids = (start, end)
obj_labels = np.zeros((len(token_ids), len(predicate2id), 2))
for o in spoes.get(sub_ids, []):
obj_labels[o[0], o[2], 0] = 1
obj_labels[o[1], o[2], 1] = 1
token_ids = self.sequence_padding(token_ids, maxlen=maxlen)
seg_ids = self.sequence_padding(seg_ids, maxlen=maxlen)
sub_labels = self.sequence_padding(sub_labels, maxlen=maxlen, padding=np.zeros(2))
sub_ids = np.array(sub_ids)
obj_labels = self.sequence_padding(obj_labels, maxlen=maxlen,
padding=np.zeros((len(predicate2id), 2)))
return (torch.LongTensor(token_ids), torch.LongTensor(seg_ids), torch.LongTensor(sub_ids),
torch.LongTensor(sub_labels), torch.LongTensor(obj_labels) )
def __len__(self):
data_len = len(self.data)
return data_len
def sequence_padding(self, x, maxlen, padding=0):
output = np.concatenate([x, [padding]*(maxlen-len(x))]) if len(x)<maxlen else np.array(x[:maxlen])
return output
train_dataset = TorchDataset(train_data_new)
train_loader = DataLoader(dataset=train_dataset, batch_size=25, shuffle=True)
class BertLayerNorm(nn.Module):
def __init__(self, hidden_size, eps=1e-12):
super(BertLayerNorm, self).__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.bias = nn.Parameter(torch.zeros(hidden_size))
self.variance_epsilon = eps
def forward(self, x):
u = x.mean(-1, keepdim=True) # [bs, maxlen, 1]
s = (x - u).pow(2).mean(-1, keepdim=True)
x = (x - u) / torch.sqrt(s + self.variance_epsilon)
return self.weight * x + self.bias
class REModel(nn.Module):
def __init__(self):
super(REModel, self).__init__()
self.bert = BertModel.from_pretrained(BERT_PATH)
for param in self.bert.parameters():
param.requires_grad = True
self.linear = nn.Linear(768, 768)
self.relu = nn.ReLU()
self.sub_output = nn.Linear(768, 2)
self.obj_output = nn.Linear(768, len(predicate2id)*2)
self.sub_pos_emb = nn.Embedding(256, 768) # subject位置embedding
self.layernorm = BertLayerNorm(768, eps=1e-12)
def forward(self, token_ids, seg_ids, sub_ids=None):
out, _ = self.bert(token_ids, token_type_ids=seg_ids,
output_all_encoded_layers=False) # [batch_size, maxlen, size]
sub_preds = self.sub_output(out) # [batch_size, maxlen, 2]
sub_preds = torch.sigmoid(sub_preds)
# sub_preds = sub_preds ** 2
if sub_ids is None:
return sub_preds
# 融入subject特征信息
sub_pos_start = self.sub_pos_emb(sub_ids[:, :1])
sub_pos_end = self.sub_pos_emb(sub_ids[:, 1:]) # [batch_size, 1, size]
sub_id1 = sub_ids[:, :1].unsqueeze(-1).repeat(1, 1, out.shape[-1]) # subject开始的位置id
sub_id2 = sub_ids[:, 1:].unsqueeze(-1).repeat(1, 1, out.shape[-1]) # [batch_size, 1, size]
sub_start = torch.gather(out, 1, sub_id1)
sub_end = torch.gather(out, 1, sub_id2) # [batch_size, 1, size]
sub_start = sub_pos_start + sub_start
sub_end = sub_pos_end + sub_end
out1 = out + sub_start + sub_end
out1 = self.layernorm(out1)
out1 = F.dropout(out1, p=0.5, training=self.training)
output = self.relu(self.linear(out1))
output = F.dropout(output, p=0.4, training=self.training)
output = self.obj_output(output) # [batch_size, maxlen, 2*plen]
output = torch.sigmoid(output)
# output = output ** 2
obj_preds = output.view(-1, output.shape[1], len(predicate2id), 2)
return sub_preds, obj_preds
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
net = REModel().to(DEVICE)
print(DEVICE)
optimizer = torch.optim.Adam(net.parameters(), lr=1e-5)
def extract_spoes(text, model, device):
"""抽取三元组"""
if len(text) > 254:
text = text[:254]
tokens = tokenizer.tokenize(text)
tokens = ["[CLS]"] + tokens + ["[SEP]"]
token_ids = tokenizer.convert_tokens_to_ids(tokens)
assert len(token_ids) == len(text) + 2
seg_ids = [0] * len(token_ids)
sub_preds = model(torch.LongTensor([token_ids]).to(device),
torch.LongTensor([seg_ids]).to(device))
sub_preds = sub_preds.detach().cpu().numpy() # [1, maxlen, 2]
# print(sub_preds[0,])
start = np.where(sub_preds[0, :, 0] > 0.2)[0]
end = np.where(sub_preds[0, :, 1] > 0.2)[0]
# print(start, end)
tmp_print = []
subjects = []
for i in start:
j = end[end>=i]
if len(j) > 0:
j = j[0]
subjects.append((i, j))
tmp_print.append(text[i-1: j])
if subjects:
spoes = []
token_ids = np.repeat([token_ids], len(subjects), 0) # [len_subjects, seqlen]
seg_ids = np.repeat([seg_ids], len(subjects), 0)
subjects = np.array(subjects) # [len_subjects, 2]
# 传入subject 抽取object和predicate
_, object_preds = model(torch.LongTensor(token_ids).to(device),
torch.LongTensor(seg_ids).to(device),
torch.LongTensor(subjects).to(device))
object_preds = object_preds.detach().cpu().numpy()
# print(object_preds.shape)
for sub, obj_pred in zip(subjects, object_preds):
# obj_pred [maxlen, 55, 2]
start = np.where(obj_pred[:, :, 0] > 0.2)
end = np.where(obj_pred[:, :, 1] > 0.2)
for _start, predicate1 in zip(*start):
for _end, predicate2 in zip(*end):
if _start <= _end and predicate1 == predicate2:
spoes.append(
((sub[0]-1, sub[1]-1), predicate1, (_start-1, _end-1))
)
break
return [(text[s[0]:s[1]+1], id2predicate[p], text[o[0]:o[1]+1])
for s, p, o in spoes]
else:
return []
def evaluate(data, model, device):
"""评估函数,计算f1、precision、recall
"""
X, Y, Z = 1e-10, 1e-10, 1e-10
f = open('CMeIE/dev_pred.json', 'w', encoding='utf-8')
pbar = tqdm()
for d in data:
R = extract_spoes(d['text'], model, device)
T = d['spo_list']
# print(R, T)
R = set(R)
T = set(T)
X += len(R & T)
Y += len(R)
Z += len(T)
f1, precision, recall = 2 * X / (Y + Z), X / Y, X / Z
pbar.update()
pbar.set_description(
'f1: %.5f, precision: %.5f, recall: %.5f' % (f1, precision, recall)
)
s = json.dumps({
'text': d['text'],
'spo_list': list(T),
'spo_list_pred': list(R),
'new': list(R - T),
'lack': list(T - R),
}, ensure_ascii=False, indent=4)
f.write(s + '\n')
pbar.close()
f.close()
return f1, precision, recall
def train(model, train_loader, optimizer, epoches, device):
f1_max = 0.5428
for _ in range(epoches):
print('epoch: ', _ + 1)
start = time.time()
train_loss_sum = 0.0
for batch_idx, x in tqdm(enumerate(train_loader)):
token_ids, seg_ids, sub_ids = x[0].to(device), x[1].to(device), x[2].to(device)
mask = (token_ids > 0).float()
mask = mask.to(device) # zero-mask
sub_labels, obj_labels = x[3].float().to(device), x[4].float().to(device)
sub_preds, obj_preds = model(token_ids, seg_ids, sub_ids)
# (batch_size, maxlen, 2), (batch_size, maxlen, 44, 2)
# 计算loss
loss_sub = F.binary_cross_entropy(sub_preds, sub_labels, reduction='none') #[bs, ml, 2]
loss_sub = torch.mean(loss_sub, 2) # (batch_size, maxlen)
loss_sub = torch.sum(loss_sub * mask) / torch.sum(mask)
loss_obj = F.binary_cross_entropy(obj_preds, obj_labels, reduction='none') # [bs, ml, 44, 2]
loss_obj = torch.sum(torch.mean(loss_obj, 3), 2) # (bs, maxlen)
loss_obj = torch.sum(loss_obj * mask) / torch.sum(mask)
loss = loss_sub + loss_obj
optimizer.zero_grad()
loss.backward()
optimizer.step()
train_loss_sum += loss.cpu().item()
if (batch_idx + 1) % 300 == 0:
print('loss: ', train_loss_sum / (batch_idx+1), 'time: ', time.time() - start)
train_l.append((_ + 1,train_loss_sum / (batch_idx+1)))
with torch.no_grad():
val_f1, pre, rec = evaluate(valid_data, net, DEVICE)
print("f1, pre, rec: ", val_f1, pre, rec)
if val_f1>f1_max:
torch.save(net.state_dict(), "CMeIE/roberta.pth")
f1_max = val_f1
val_f1_r.append((_ + 1,val_f1))
# 如果运行完一次可以将其还原
# net.load_state_dict(torch.load("CMeIE/roberta.pth"))
train(net, train_loader, optimizer, 5, DEVICE)
def combine_spoes(spoes):
"""
"""
new_spoes = {}
for s, p, o in spoes:
p1 = p
p2 = '@value'
if (s, p1) in new_spoes:
new_spoes[(s, p1)][p2] = o
else:
new_spoes[(s, p1)] = {p2: o}
return [(k[0], k[1], v) for k, v in new_spoes.items()]
def predict_to_file(in_file, out_file):
"""预测结果到文件,方便提交
"""
fw = open(out_file, 'w', encoding='utf-8')
with open(in_file, encoding='utf-8') as fr:
for l in tqdm(fr):
l = json.loads(l)
spoes = combine_spoes(extract_spoes(l['text'], net, DEVICE))
spoes = [{
'subject': spo[0],
'subject_type': predicate2type[spo[1]][0],
'predicate': spo[1],
'object': spo[2],
'object_type': {
k: predicate2type[spo[1]][1]
for k in spo[2]
}
}
for spo in spoes]
l['spo_list'] = spoes
s = json.dumps(l, ensure_ascii=False)
fw.write(s + '\n')
fw.close()
predict_to_file('CMeIE/CMeIE_test.json', 'CMeIE/RE_pred.json')
record()