Skip to content

Latest commit

 

History

History
50 lines (36 loc) · 1.38 KB

Readme.md

File metadata and controls

50 lines (36 loc) · 1.38 KB

Implementation for DNS(M,N) and Softmax(\rho, N)

The Relationship between Hard Negative Sampling and TopK metrics

This is our PyTorch implementation for the paper 2023'WWW:

Wentao Shi, Jiawei Chen, Fuli Feng, Jizhi Zhang, Junkang Wu, Chongming Gao, Xiangnan He (2023) On the Theories behind Hard Negative Sampling for Recommendation. paper link. In WWW 2023.

Dependencies

  • Compatible with PyTorch 1.8.2 and Python 3.8.
  • Dependencies can be installed using requirements.txt.

Parameters

  • data

    • gowalla, yelp, amazoni
  • d

    • embedding size
  • m, model

    • 0: matrix factorization
    • 1: NCF
    • 2: GMF
    • 3: MLP
    • 4: LightGCN
  • sampler

    • 0: uniform
    • 2: AdaSIR uniform
    • 3: popularity
    • 5: AdaSIR pop
  • loss_type

    • 0: AdaSIR
    • 1: DNS(M, N)
    • 2: Softmax(\rho, N)

Running Example

python main_more.py --lambda_w 2 --sampler 0 --sample_num 200 --fix_seed --weighted --loss_type 1 for DNS(M, N)

python main_more.py --lambda_w 1 --sampler 0 --sample_num 200 --fix_seed --weighted --loss_type 2 for Softmax(\rho, N)

Acknowledgement

The project is built upon AdaSIR

For any clarification, comments, or suggestions please create an issue or contact me.