-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathrun_all_evaluations.py
302 lines (254 loc) · 10.9 KB
/
run_all_evaluations.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
"""Evaluate all model training runs in a directory.
This script creates a CSV file with the test-set performance of each model, prints a
summary of the best models, and saves a figure portraying the test-set performance of
all models.
"""
import argparse
import datetime
import json
import os
from pathlib import Path
import subprocess
import sys
from typing import Dict, List
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
import torch
import yaml
try:
from yaml import CSafeLoader as Loader
except Exception:
from yaml import SafeLoader as Loader
class ChampKitException(Exception):
...
class ErrorOnValidation(ChampKitException):
...
def _prepare_df_for_run(directory: Path) -> pd.DataFrame:
with open(directory / "args.yaml") as f:
args = yaml.load(f, Loader=Loader)
df = pd.DataFrame.from_dict(args, orient="index").T
df.insert(0, "directory", directory)
return df
def _get_results_json_from_stdout(stdout: str) -> Dict:
"""Process the stdout of 'validate.py' and return a python dict of the
validation results.
"""
stdout_lines = stdout.splitlines()
try:
start_idx = stdout_lines.index("--result")
except ValueError:
raise ChampKitException(
"could not find --result in the output of validate.py... contact developer."
)
# example of this variable
# ['{',
# ' "model": "resnet50",',
# ' "top1": 84.5001,',
# ' "top1_err": 15.4999,',
# ' "auroc": 0.9364033341407776,',
# ' "f1": 0.845001220703125,',
# ' "param_count": 23.51,',
# ' "img_size": 224,',
# ' "crop_pct": 0.95,',
# ' "interpolation": "bicubic"',
# '}']
stdout_lines_maybe_results_json = stdout_lines[start_idx + 1 :]
stop_idx = stdout_lines_maybe_results_json.index("}")
json_str_with_results = " ".join(stdout_lines_maybe_results_json[: stop_idx + 1])
# we have parsed the results into a python dict!
# {'model': 'resnet50',
# 'top1': 84.5001,
# 'top1_err': 15.4999,
# 'auroc': 0.9364033341407776,
# 'f1': 0.845001220703125,
# 'param_count': 23.51,
# 'img_size': 224,
# 'crop_pct': 0.95,
# 'interpolation': 'bicubic'}
results = json.loads(json_str_with_results)
return results
def _run_one_evaluation(row: pd.Series) -> pd.DataFrame:
"""Run an evaluation given a row of the dataframe that contains info on all runs."""
row = row.copy() # make sure we don't modify original
checkpoint = Path(row["directory"]) / "model_best.pth.tar"
data_dir = Path(row["data_dir"])
classmap_file = data_dir / "classmap.txt"
if not classmap_file.exists():
raise FileNotFoundError(f"cannot find the classmap file: {classmap_file}")
print(f"[champkit] checkpoint={checkpoint}")
num_classes = int(row["num_classes"])
print(f"[champkit] num_classes={num_classes}")
program_and_args = f"""
{sys.executable} \
validate.py \
--model={row["model"]} \
--checkpoint={checkpoint} \
--batch-size=64 \
--split=test \
--num-classes={num_classes} \
--class-map={classmap_file}""".strip()
program_and_args += f' {row["data_dir"]}'
p = subprocess.run(program_and_args.split(), capture_output=True, env=os.environ)
if p.returncode != 0:
print("** ERROR **" * 8)
print(p.stderr.decode())
print("Here is the command-line that errored:")
print(" ".join(p.args))
raise ErrorOnValidation(
"Error on validation. Please see logs immediately above this."
)
tmp_results = _get_results_json_from_stdout(p.stdout.decode())
results = dict(
model=row["model"],
data_dir=row["data_dir"],
pretrained=row["pretrained"],
checkpoint=checkpoint,
classmap=classmap_file,
num_classes=row["num_classes"],
seed=row['seed'],
)
if results["num_classes"] > 100:
raise ValueError("this script does not support num_classes>100")
# Make a dataframe with one row.
df = pd.DataFrame(results, index=[0])
# Fill in the stats from evaluation.
for stat in ["auroc", "f1", "fp", "fn", "tp", "tn", "fpr", "fnr", "tpr", "tnr", "accuracy"]:
cols = [f"{stat}_cls{i:02d}" for i in range(num_classes)]
df[cols] = tmp_results[stat]
assert len(df) == 1
return df
def run_all_evaluations(directory) -> pd.DataFrame:
dirs = [p for p in Path(directory).glob("*") if p.is_dir()]
dirs.sort()
if not dirs:
raise ChampKitException(f"no directories found in {directory}")
print(f"[champkit] Found {len(dirs)} runs in {directory}")
df = pd.concat((_prepare_df_for_run(d) for d in dirs), ignore_index=True)
best_models = df.loc[:, "directory"] / "model_best.pth.tar"
models_exist_mask = best_models.map(Path.exists)
print(
f"[champkit] Will evaluate the {models_exist_mask.sum()} runs with model_best.pth.tar."
)
df = df.loc[models_exist_mask, :].copy()
if df.shape[0] == 0:
raise ChampKitException("no model_best.pth.tar files found...")
all_results: List[pd.DataFrame] = []
for i, (_, row) in enumerate(df.iterrows()):
print(f"[champkit] evaluating run {i+1} of {df.shape[0]}...")
print(f"[champkit] run_dir={row['directory']}")
print(f"[champkit] model={row['model']}")
print(f"[champkit] pretrained={row['pretrained']}")
print(f"[champkit] data_dir={row['data_dir']}")
state_dict = torch.load(
Path(row["directory"]) / "model_best.pth.tar", map_location="cpu"
)
epoch = state_dict.get("epoch")
if epoch is not None:
print(f"[champkit] epoch={epoch}")
del state_dict
result = _run_one_evaluation(row=row)
print("[champkit] Results:")
for class_idx in range(result["num_classes"][0]):
print(f"[champkit] Class {class_idx}")
print(f"[champkit] Accuracy={result[f'accuracy_cls{class_idx:02d}'][0]:0.3f}")
print(f"[champkit] AUROC={result[f'auroc_cls{class_idx:02d}'][0]:0.3f}")
print(f"[champkit] F1={result[f'f1_cls{class_idx:02d}'][0]:0.3f}")
print(f"[champkit] FPR={result[f'fpr_cls{class_idx:02d}'][0]:0.3f}")
print(f"[champkit] FNR={result[f'fnr_cls{class_idx:02d}'][0]:0.3f}")
print(f"[champkit] TPR={result[f'tpr_cls{class_idx:02d}'][0]:0.3f}")
print(f"[champkit] TNR={result[f'tnr_cls{class_idx:02d}'][0]:0.3f}")
print("[champkit]")
result["epoch"] = epoch # could be None but that's ok
# Convert list or tuple to string to allow addition to dataframe.
row = row.map(lambda p: str(p) if isinstance(p, (list, tuple)) else p)
# Drop any names that are already in the dataframe.
row = row[~row.index.isin(result.columns)]
# Add these new values.
row = row.to_frame(name=0).T # Set index to 0...
result = pd.concat((result, row), axis=1)
assert len(result) == 1
all_results.append(result)
del result, row # for our sanity
print()
df = pd.concat(all_results, axis=0, ignore_index=True)
return df
def _print_summary(df: pd.DataFrame, output_pdf: str):
print()
print("***********************************")
print(" SUMMARY OF EVALUATION ")
print("***********************************")
print()
num_classes = df["num_classes"][0]
metric_info = {
"auroc": {"columns": [f"auroc_cls{c:02d}" for c in range(num_classes)], "mode": "max"},
"accuracy": {"columns": [f"accuracy_cls{c:02d}" for c in range(num_classes)], "mode": "max"},
"tpr": {"columns": [f"tpr_cls{c:02d}" for c in range(num_classes)], "mode": "max"},
"tnr": {"columns": [f"tnr_cls{c:02d}" for c in range(num_classes)], "mode":"max"},
"fpr": {"columns": [f"fpr_cls{c:02d}" for c in range(num_classes)], "mode":"min"},
"fnr": {"columns": [f"fnr_cls{c:02d}" for c in range(num_classes)], "mode":"min"},
}
fig, axes = plt.subplots(nrows=3, ncols=2, figsize=(10, 13))
TOPK = 3
best_ids = []
for (metric, info), ax in zip(metric_info.items(), axes.flat):
metric_values = df[info["columns"]].copy()
mode = info["mode"]
means_per_class = metric_values.mean(axis=1)
metric_values[f"{metric}_mean"] = means_per_class
print(f"***** {metric.upper()} *****")
for col in metric_values.columns:
if mode == "max":
best_models = metric_values[col].nlargest(TOPK)
elif mode == "min":
best_models = metric_values[col].nsmallest(TOPK)
else:
raise NotImplementedError(f"unknown mode '{mode}'")
print(f"Top {TOPK} models by {metric} -- '{col}'\t{best_models.index.tolist()}")
best_ids.extend(best_models.index.tolist())
print()
metric_values["model_number"] = metric_values.index.copy()
metric_values_melted = metric_values.melt(id_vars="model_number")
sns.scatterplot(data=metric_values_melted, x="model_number", y="value", hue="variable", ax=ax)
ax.set_title(f"{metric.title()} by model number")
ax.set_ylabel(metric)
ax.set_ylim(-0.05, 1.05)
ax.set_xlabel("Model number (row in CSV from evaluation)")
fig.tight_layout()
print(f"[champkit] Saving plots of model performance to {output_pdf}")
plt.savefig(output_pdf)
best_ids = sorted(set(best_ids))
print()
print("*" * 40)
print(f"Model checkpoints that were in the top {TOPK} of any evaluation metric:")
print(" Please refer to the evaluation summary above for the best models per evaluation metric.")
print(" NOTE: these are NOT sorted by performance. The models are sorted by their position in the evaluation CSV.")
print()
for model_number, checkpoint in df.loc[best_ids, "checkpoint"].iteritems():
print(f"{str(model_number):>3s}\t{checkpoint}")
print("*" * 40)
print()
if __name__ == "__main__":
p = argparse.ArgumentParser(description=__doc__)
p.add_argument(
"--directory",
required=True,
help="Top-level directory that contains individual runs.",
)
p.add_argument(
"--output-csv",
default=None,
help="Output CSV with results. Default: champkit_evaluations_YYYYMMDDHHmmss.csv",
)
args = p.parse_args()
if args.output_csv is None:
args.output_csv = (
f'champkit_evaluations_{datetime.datetime.now().strftime("%Y%m%d%H%M%S")}.csv'
)
print(f"[champkit] Evaluating runs in {args.directory}", flush=True)
df = run_all_evaluations(args.directory)
print(f"[champkit] Saving evaluation results to {args.output_csv}")
df.to_csv(args.output_csv, index=False)
output_pdf = Path(args.output_csv).with_suffix(".pdf")
_print_summary(df=df, output_pdf=output_pdf)
print("[champkit] Done!")