-
Notifications
You must be signed in to change notification settings - Fork 42
/
Copy pathmain.py
109 lines (89 loc) · 3.65 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
import tensorflow as tf
import fsrcnn
import data_utils
import run
import os
import cv2
import numpy as np
import pathlib
import argparse
from PIL import Image
import numpy
from tensorflow.python.client import device_lib
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' #gets rid of avx/fma warning
# TODO:
# Overlapping patches
# seperate learning rate for deconv layer
# switch out deconv layer for different models
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--train', help='Train the model', action="store_true")
parser.add_argument('--test', help='Run tests on the model', action="store_true")
parser.add_argument('--export', help='Export the model as .pb', action="store_true")
parser.add_argument('--fromscratch', help='Load previous model for training',action="store_false")
parser.add_argument('--finetune', help='Finetune model on General100 dataset',action="store_true")
parser.add_argument('--small', help='Run FSRCNN-small', action="store_true")
parser.add_argument('--scale', type=int, help='Scaling factor of the model', default=2)
parser.add_argument('--batch', type=int, help='Batch size of the training', default=1)
parser.add_argument('--epochs', type=int, help='Number of epochs during training', default=20)
parser.add_argument('--image', help='Specify test image', default="./images/butterfly.png")
parser.add_argument('--lr', type=float, help='Learning_rate', default=0.001)
parser.add_argument('--d', type=int, help='Variable for d', default=56)
parser.add_argument('--s', type=int, help='Variable for s', default=12)
parser.add_argument('--m', type=int, help='Variable for m', default=4)
parser.add_argument('--traindir', help='Path to train images')
parser.add_argument('--finetunedir', help='Path to finetune images')
parser.add_argument('--validdir', help='Path to validation images')
args = parser.parse_args()
# INIT
scale = args.scale
fsrcnn_params = (args.d, args.s, args.m) #d,s,m
traindir = args.traindir
augmented_path = "./augmented"
small = args.small
lr_size = 10
if(scale == 3):
lr_size = 7
elif(scale == 4):
lr_size = 6
hr_size = lr_size * scale
# FSRCNN-small
if small:
fsrcnn_params = (32, 5, 1)
# Set checkpoint paths for different scales and models
ckpt_path = ""
if scale == 2:
ckpt_path = "./CKPT_dir/x2/"
if small:
ckpt_path = "./CKPT_dir/x2_small/"
elif scale == 3:
ckpt_path = "./CKPT_dir/x3/"
if small:
ckpt_path = "./CKPT_dir/x3_small/"
elif scale == 4:
ckpt_path = "./CKPT_dir/x4/"
if small:
ckpt_path = "./CKPT_dir/x4_small/"
else:
print("Upscale factor scale is not supported. Choose 2, 3 or 4.")
exit()
# Set gpu
config = tf.ConfigProto() #log_device_placement=True
config.gpu_options.allow_growth = True
# Create run instance
run = run.run(config, lr_size, ckpt_path, scale, args.batch, args.epochs, args.lr, args.fromscratch, fsrcnn_params, small, args.validdir)
if args.train:
# if finetune, load model and train on general100
if args.finetune:
traindir = args.finetunedir
augmented_path = "./augmented_general100"
# augment (if not done before) and then load images
data_utils.augment(traindir, save_path=augmented_path)
run.train(augmented_path)
if args.test:
run.testFromPb(args.image)
#run.test(args.image)
#run.upscale(args.image)
if args.export:
run.export()
print("I ran successfully.")