-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathanalyze_collision.retrain.py
616 lines (506 loc) · 24.1 KB
/
analyze_collision.retrain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
"""
Analyze feature collison - during re-training (w. Eager Execution of TF)
"""
import csv, os, sys
# suppress tensorflow errors -- too many, what's the purpose?
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
import json
import argparse
import itertools
import numpy as np
# JAX models (for privacy analysis)
from jax import grad, partial, random, tree_util, vmap, device_put
from jax.lax import stop_gradient
from jax.experimental import optimizers, stax
from networks.linears import LinearRegressionJAX
from networks.mlps import ShallowMLPJAX
# tensorflow modules
import tensorflow as tf
from tensorflow.compat.v1.logging import set_verbosity, ERROR
# custom libs
from utils import io
from utils import datasets, models, optims
# ------------------------------------------------------------
# Global variables
# ------------------------------------------------------------
_rand_fix = 215
_verbose = True
_fn_holder= None
_dataindex= {
'one' : { 0: 0, 1: 1, }, # choose 0 - 0th, 1 - 1th
'multi': {
0: [0, 2, 5, 8, 9, 10, 11, 12, 13, 15, \
16, 19, 20, 21, 23, 32, 33, 35, 36, 40, \
41, 42, 43, 45, 46, 48, 49, 54, 55, 56, \
57, 58, 59, 61, 63, 64, 65, 69, 73, 77, \
79, 80, 84, 86, 89, 90, 91, 93, 95, 99, \
101, 102, 104, 109, 110, 112, 114, 117, 118, 120, \
122, 125, 126, 127, 134, 135, 139, 141, 143, 144, \
147, 148, 149, 150, 151, 153, 155, 158, 160, 161, \
162, 163, 167, 168, 169, 172, 174, 175, 177, 178, \
180, 182, 184, 185, 187, 188, 189, 191, 196, 198],
1: [1, 3, 4, 6, 7, 14, 17, 18, 22, 24, \
25, 26, 27, 28, 29, 30, 31, 34, 37, 38, \
39, 44, 47, 50, 51, 52, 53, 60, 62, 66, \
67, 68, 70, 71, 72, 74, 75, 76, 78, 81, \
82, 83, 85, 87, 88, 92, 94, 96, 97, 98, \
100, 103, 105, 106, 107, 108, 111, 113, 115, 116, \
119, 121, 123, 124, 128, 129, 130, 131, 132, 133, \
136, 137, 138, 140, 142, 145, 146, 152, 154, 156, \
157, 159, 164, 165, 166, 170, 171, 173, 176, 179, \
181, 183, 186, 190, 192, 193, 194, 195, 197, 199],
},
}
# ------------------------------------------------------------
# Perform interpolation
# ------------------------------------------------------------
def _do_interpolation(data, labels, dindex, imode, alpha):
# sanity check
assert (0. <= alpha <= 1.), ('Error: alpha [{}] should be in [0,1]'.format(alpha))
# load the data indexes
data_indexes = dindex[imode]
# choose the indexes, currently only support 0/1 - binary data
if 'one' == imode:
data0 = data[data_indexes[0]:(data_indexes[0]+1)]
data1 = data[data_indexes[1]:(data_indexes[1]+1)]
labels = labels[data_indexes[0]:(data_indexes[0]+1)]
elif 'multi' == imode:
data0 = data[np.array(data_indexes[0])]
data1 = data[np.array(data_indexes[1])]
labels = labels[np.array(data_indexes[0])]
# do interpolation (clip within [0,1])
datai = (1-alpha)*data0 + alpha*data1
datai = np.clip(datai, 0., 1.)
return (datai, labels)
# ------------------------------------------------------------
# Valiadation datasets
# ------------------------------------------------------------
def _validate(model, validset):
corrects = []
for (_, (data, labels)) in enumerate(validset.take(-1)):
logits, penultimate = model(data, training=False)
predicts = tf.argmax(logits, axis=1)
predicts = tf.dtypes.cast(predicts, tf.int32)
corrects.append(tf.equal(predicts, labels).numpy())
cur_acc = np.mean(corrects)
return cur_acc
# ------------------------------------------------------------
# JAX related
# ------------------------------------------------------------
def _data_loader(x_train, y_train, batch_size, num_batches):
# [Note]: only use the numpy random here; otherwise, all should be JAX numpy
from numpy import random as npramdom
from numpy import argwhere as nargwhere
rstate = npramdom.RandomState(_rand_fix)
while True:
permutation = rstate.permutation(x_train.shape[0])
for bidx in range(num_batches):
batch_indexes = permutation[bidx*batch_size:(bidx+1)*batch_size]
yield x_train[batch_indexes], y_train[batch_indexes]
def _shape_data(data, labels, dummy_dim=False):
orig_shape = (-1, 1, 28, 28, 1) if dummy_dim else (-1, 28, 28, 1)
return np.reshape(data, orig_shape), labels
def _convert_to_onehot(labels, total=10):
# use the original numpy functions
from numpy import zeros as nzeros
from numpy import arange as narange
# to one-hot
new_labels = nzeros((labels.size, total))
new_labels[narange(labels.size), labels] = 1.
return new_labels
def _validate_JAX(params, applyfn, data, labels):
predict = applyfn(params, data)
predict = np.argmax(predict, axis=1)
# convert to index encoding
oracles = np.argmax(labels, axis=1)
return np.mean(predict == oracles)
def _loss(params, batch):
global _fn_holder
data, labels = batch
logits = _fn_holder(params, data)
logits = stax.logsoftmax(logits) # log normalize
return -np.mean(np.sum(logits * labels, axis=1)) # cross entropy loss
def _split_poisons_JAX( \
poison_data, poison_labels, total_data, total_labels, verbose=False):
"""
Identify whether the batch includes poisons
"""
# reduce one extra dimension, added, from the total data
total_dims = (total_data.shape[0],) + tuple(total_data.shape[2:])
total_data = total_data.reshape(total_dims)
# data-holder
poison_indexes = []
# iterate over the total data, and see if any data is in poisons
for pidx, each_poison in enumerate(poison_data):
# : search the inclusion
if len(each_poison.shape) == 1:
search_result = (each_poison == total_data).all((1))
else:
search_result = (each_poison == total_data).all((1, 2, 3))
# : search the index
search_tindex = [i for i, tfval in enumerate(search_result) if tfval]
# : skip, if the index is the same
if not search_tindex: continue
# : only include when the labels are correct
if (poison_labels[pidx] == total_labels[search_tindex[0]]).any():
poison_indexes.append(search_tindex[0])
# split into two ...
poison_indexes = np.array(poison_indexes)
clean_indexes = np.array([ \
didx for didx in range(len(total_data)) if didx not in poison_indexes])
# expand the data back
total_dims = (total_data.shape[0], 1) + tuple(total_data.shape[1:])
total_data = total_data.reshape(total_dims)
# deal with the no-poison cases
if (poison_indexes.size == 0):
return total_data, total_labels, np.array([]), np.array([])
# sane cases
return total_data[clean_indexes], total_labels[clean_indexes], \
total_data[poison_indexes], total_labels[poison_indexes]
def _pminit_w_baseline(pminit_params, baseline_vars, dataset, network):
if 'subtask' == dataset:
if 'lr' == network:
pminit_params = [()]
pminit_params.append(( \
device_put(baseline_vars['linear_regression/dense/kernel:0']),
device_put(baseline_vars['linear_regression/dense/bias:0']),
))
return (pminit_params)
else:
assert False, ('Error: unknown network {} for {}'.format(network, dataset))
elif 'fashion_mnist' == dataset:
if 'shallow-mlp' == network:
pminit_params = [()]
pminit_params.append(( \
device_put(baseline_vars['shallow_mlp/dense/kernel:0']),
device_put(baseline_vars['shallow_mlp/dense/bias:0']),
))
pminit_params.append(())
pminit_params.append(( \
device_put(baseline_vars['shallow_mlp/dense_1/kernel:0']),
device_put(baseline_vars['shallow_mlp/dense_1/bias:0']),
))
pminit_params.append(())
pminit_params.append(( \
device_put(baseline_vars['shallow_mlp/dense_2/kernel:0']),
device_put(baseline_vars['shallow_mlp/dense_2/bias:0']),
))
return (pminit_params)
else:
assert False, ('Error: unknown network {} for {}'.format(network, dataset))
else:
assert False, ('Error: unknown dataset - {}'.format(dataset))
# done.
# ------------------------------------------------------------
# Misc. function
# ------------------------------------------------------------
def store_updates_to_csvfile(filename, data):
with open(filename, 'w') as outfile:
csv_writer = csv.writer(outfile)
for each in data:
csv_writer.writerow([each])
# done.
"""
Main
"""
if __name__ == '__main__':
# --------------------------------------------------------------------------
# Arguments for this script: command line compatibility
# --------------------------------------------------------------------------
parser = argparse.ArgumentParser( \
description='Analyze the gradients when there is feature collison during re-training.')
# load arguments (use -es to fit the # of characters)
parser.add_argument('--dataset', type=str, default='fashion_mnist',
help='the name of a dataset (default: fashion_mnist)')
parser.add_argument('--datapth', type=str, default='...',
help='the location of a dataset (default: ...)')
# model parameters
parser.add_argument('--network', type=str, default='convnet',
help='the name of a network (default: simple)')
parser.add_argument('--netbase', type=str, default='',
help='the location of baseline model (default: ...)')
# interpolation ratio
parser.add_argument('--imode', type=str, default='one',
help='interpolation mode (one or multi, based on the # poisons)')
parser.add_argument('--alpha', type=float, default=0.0,
help='interpolation ratio between the two samples (default: 0.0)')
# load arguments
args = parser.parse_args()
print (json.dumps(vars(args), indent=2))
# ------------------------------------------------------------
# Tensorflow configurations
# ------------------------------------------------------------
# control tensorflow info. level
set_verbosity(tf.compat.v1.logging.ERROR)
# enable eager execution
tf.enable_eager_execution()
# ------------------------------------------------------------
# Load the baseline model
# ------------------------------------------------------------
# extract the basic information from the baseline model (always vanilla)
net_tokens = args.netbase.split('/')
if 'subtask' == args.dataset:
# : subtask case
net_tokens = net_tokens[3].split('_')
else:
# : fashion_mnist/cifar10
net_tokens = net_tokens[2].split('_')
# model parameters
batch_size = int(net_tokens[2])
epochs = int(net_tokens[3])
epochs = 40 if epochs > 40 else epochs//2
learn_rate = float(net_tokens[4])
# error case
if 'dp_' in args.netbase:
assert False, ('Error: Baseline accuracy cannot come from a DP-model.')
# load the model
baseline_vars = models.extract_tf_model_parameters(args.network, args.netbase)
baseline_model = models.load_model( \
args.dataset, args.datapth, args.network, vars=baseline_vars)
print (' : Load the baseline model [{}] from [{}]'.format(args.network, args.netbase))
# ------------------------------------------------------------
# Load the dataset (Data + Poisons)
# ------------------------------------------------------------
# load the dataset
(x_train, y_train), (x_test, y_test) = \
datasets.define_dataset(args.dataset, args.datapth)
# bound check for the inputs (to compare the results with DP-training)
assert (x_train.min() >= 0.) and (x_train.max() <= 1.) \
and (x_test.min() >= 0.) and (x_test.max() <= 1.)
# create an interpolated sample from two samples and a ratio
(x_inter, y_inter) = _do_interpolation( \
x_train, y_train, _dataindex, args.imode, args.alpha)
# convert the data into float32/int32
x_train = x_train.astype('float32')
y_train = y_train.astype('int32')
x_test = x_test.astype('float32')
y_test = y_test.astype('int32')
x_inter = x_inter.astype('float32')
y_inter = y_inter.astype('int32')
# [Notice]
print (' : Construct the analysis data')
print (' Train : {} in [{:.2f}, {:.2f}]'.format(x_train.shape, x_train.min(), x_train.max()))
print (' Test : {} in [{:.2f}, {:.2f}]'.format(x_test.shape, x_test.min(), x_test.max()))
print (' Interp: {} in [{:.2f}, {:.2f}]'.format(x_inter.shape, x_inter.min(), x_inter.max()))
# compose into the tensorflow datasets
clean_validset = datasets.convert_to_tf_dataset(x_test, y_test)
# load the baseline acc
baseline_acc = _validate(baseline_model, clean_validset)
print (' : Baseline accuracy is [{}]'.format(baseline_acc))
# --------------------------------------------------------------------------
# Substitute the numpy module used by JAX (when privacy)
# --------------------------------------------------------------------------
import jax.numpy as np
# --------------------------------------------------------------------------
# Set the location to store...
# --------------------------------------------------------------------------
# extract the setup
if 'one' == args.imode:
current_task = 'a_pair_{}_retrain'.format( \
'_'.join(map(str, _dataindex['one'].values())))
current_data = args.datapth.split('/')[-1].replace('.pkl', '')
elif 'multi' == args.imode:
current_task = 'pairs_of_{}_retrain'.format(len(_dataindex['multi'][0]))
current_data = args.datapth.split('/')[-1].replace('.pkl', '')
else:
assert False, ('Error: unknown mode - {}'.format(args.imode))
# extract the current data
current_data = args.dataset
# compose
store_base = os.path.join( \
'results', 'analysis', 'collison', \
current_task, current_data, 'alpha_{}'.format(args.alpha))
# fix store locations for each
netname_pfix = 'vanilla_{}_{}_{}_{}'.format( \
args.network, batch_size, epochs, learn_rate)
results_model = os.path.join(store_base, netname_pfix)
if not os.path.exists(results_model): os.makedirs(results_model)
results_update= os.path.join(results_model, 'param_updates')
if not os.path.exists(results_update): os.makedirs(results_update)
results_data = os.path.join(results_model, 'analysis_results.csv')
# [DEBUG]
print (' : Store locations are:')
print (' - Model folder : {}'.format(results_model))
print (' - Updates file : {}'.format(results_update))
print (' - Analysis data: {}'.format(results_data))
# --------------------------------------------------------------------------
# Store the interpolated data
# --------------------------------------------------------------------------
if 'one' == args.imode:
io.store_to_image( \
os.path.join(results_model, 'base_0.png'), \
x_train[_dataindex['one'][0]].reshape(1, 28, 28), format='L')
io.store_to_image( \
os.path.join(results_model, 'base_1.png'), \
x_train[_dataindex['one'][1]].reshape(1, 28, 28), format='L')
io.store_to_image( \
os.path.join(results_model, 'interpolated.png'), \
x_inter[0].reshape(1, 28, 28), format='L')
print (' : Store the interpolated images to: {}'.format(results_model))
# --------------------------------------------------------------------------
# Compose the poison dataset
# --------------------------------------------------------------------------
# total classes
tot_cls = len(set(y_train))
# convert the class information as one-hot vectors
y_train = _convert_to_onehot(y_train, total=tot_cls)
y_test = _convert_to_onehot(y_test, total=tot_cls)
y_inter = _convert_to_onehot(y_inter, total=tot_cls)
print (' : Labels converted to one-hot vectors - Y-train: {}'.format(y_train.shape))
x_total = np.concatenate((x_train, x_inter), axis=0)
y_total = np.concatenate((y_train, y_inter), axis=0)
poison_trainsize= x_total.shape[0]
poison_ncbatch, leftover = divmod(poison_trainsize, batch_size)
poison_numbatch = poison_ncbatch + bool(leftover)
poison_trainset = _data_loader( \
x_total, y_total, batch_size, poison_numbatch)
print (' : Insert the interpolated data into JAX datasets')
# --------------------------------------------------------------------------
# Prepare for re-training
# --------------------------------------------------------------------------
# define the re-training epochs
poison_epochs = 20 if (epochs > 20) else (epochs // 2)
print (' : Re-train for {} epochs'.format(poison_epochs))
# initialize sequence for JAX
prand_keys = random.PRNGKey(_rand_fix)
poison_lrate = learn_rate
# init a JAX model
if 'lr' == args.network:
fn_pmodel_init, fn_pmodel_apply = LinearRegressionJAX(tot_cls)
elif 'shallow-mlp' == args.network:
fn_pmodel_init, fn_pmodel_apply = ShallowMLPJAX(256, tot_cls)
else:
assert False, ('Error: undefined network - {}'.format(args.network))
if not _fn_holder: _fn_holder = fn_pmodel_apply
# init parameters
pmodel_indims = (-1,) + tuple(x_train.shape[1:])
_, pminit_params = fn_pmodel_init(prand_keys, pmodel_indims)
# init parameter [insert the baseline model's params]
pminit_params = _pminit_w_baseline( \
pminit_params, baseline_vars, args.dataset, args.network)
# prepare the optimizer
if 'lr' == args.network:
fn_optim_init, fn_optim_update, fn_load_params = optimizers.adam(learn_rate)
elif 'shallow-mlp' == args.network:
fn_optim_init, fn_optim_update, fn_load_params = optimizers.sgd(learn_rate)
else:
assert False, ('Error: undefined network {} (optim error)'.format(args.network))
optim_state = fn_optim_init(pminit_params)
optim_count = itertools.count()
# check the accuracy of this parameters
baseline_acc = _validate_JAX(pminit_params, fn_pmodel_apply, x_test, y_test)
print (' : Load a model [{}]'.format(args.network))
# --------------------------------------------------------------------------
# Run in the inspection mode
# --------------------------------------------------------------------------
# data holder
attack_results = []
# compute how many updates happened
total_cupdates = 0
total_pupdates = 0
# do training
steps_per_epoch = poison_trainsize // batch_size
for epoch in range(1, poison_epochs+1):
# : train the model for an epoch
for mbatch in range(poison_numbatch):
data, labels = _shape_data(*next(poison_trainset), dummy_dim=True)
"""
Dummy: this procedure is only for computing gradients
"""
# :: data holder for the parameter updates
clean_updates = []
poison_updates = []
# :: check this batch includes the poisons or not.
clean_data, clean_labels, poison_data, poison_labels = \
_split_poisons_JAX(x_inter, y_inter, data, labels, verbose=_verbose)
# :: check this batch includes the poisons or not.
if _verbose:
print (' :: The batch [{}] includes [{}] poisons...'.format(mbatch, len(poison_data)))
# :: load the parameters and random number
pmodel_params = fn_load_params(optim_state)
# :: [Poison] compute the gradient with the poisoned data
if len(poison_data) != 0:
# ::: increase the total updates
total_pupdates += 1
# ::: compute the gradients
poison_gradient = grad(_loss)( \
pmodel_params, (poison_data, poison_labels))
# ::: store the poison updates
if not poison_updates:
for each_gradient in poison_gradient[len(poison_gradient)-1]:
cur_poison_ups = each_gradient
poison_updates.append(cur_poison_ups)
else:
for gvidx, each_gradient in enumerate( \
poison_gradient[len(poison_gradient)-1]):
cur_poison_ups = each_gradient
poison_updates[gvidx] += cur_poison_ups
# :: end if len(poison...)
# :: increase the total updates
total_cupdates += 1
# :: compute the gradients
clean_gradient = grad(_loss)( \
pmodel_params, (clean_data, clean_labels))
# :: store the clean updates
if not clean_updates:
for each_gradient in clean_gradient[len(clean_gradient)-1]:
cur_clean_ups = each_gradient
clean_updates.append(cur_clean_ups)
else:
for gvidx, each_gradient in enumerate( \
clean_gradient[len(clean_gradient)-1]):
cur_clean_ups = each_gradient
clean_updates[gvidx] += cur_clean_ups
"""
Real procedure for optimizing the parameters
"""
# :: compute gradients with DP-SGD
pmodel_params = fn_load_params(optim_state)
current_count = next(optim_count)
current_random = random.fold_in(prand_keys, current_count)
optim_state = fn_optim_update(
current_count, grad(_loss)(pmodel_params, (data, labels)), optim_state)
"""
Save the updates in this epoch and batch to dir
"""
# :: [Cleans] loop over the parameters (0th kernel, 1st bias, ...)
if clean_updates:
for uidx, updates in enumerate(clean_updates):
update_clfile = os.path.join( \
results_update, '{}_{}_clean_{}.csv'.format(epoch, mbatch, uidx))
flatten_update = updates.flatten()
store_updates_to_csvfile(update_clfile, flatten_update)
print (' :: Store the [{}] update to [{}]'.format(uidx, update_clfile))
# :: [Poisons] loop over the parameters (0th kernel, 1st bias, ...)
if poison_updates:
for uidx, updates in enumerate(poison_updates):
update_pofile = os.path.join( \
results_update, '{}_{}_poison_{}.csv'.format(epoch, mbatch, uidx))
# > scale to (poisons)/batch
flatten_update = updates.flatten()
store_updates_to_csvfile(update_pofile, flatten_update)
print (' :: Store the [{}] update to [{}]'.format(uidx, update_pofile))
# :: cleanup the data-holders
clean_updates, poison_updates = [], []
# : end for mbatch ...
# : evaluate the test time accuracy
pmodel_params = fn_load_params(optim_state)
current_acc = _validate_JAX(pmodel_params, fn_pmodel_apply, x_test, y_test)
# : report the current state (cannot compute the total eps, as we split the ....)
print (' : Epoch {} - acc {:.4f} (base) / {:.4f} (curr)'.format( \
epoch, baseline_acc, current_acc))
# : store the attack result
attack_results.append([epoch, x_inter.shape[0], baseline_acc, current_acc])
# : flush the stdouts
sys.stdout.flush()
# : info
print (' : Poison {}, Clean {}'.format(total_pupdates, total_cupdates))
# end for epoch...
# report the attack results...
print (' : [Result] epoch {}, alpha {}, base {:.4f}, curr {:.4f}'.format( \
epoch, args.alpha, baseline_acc, current_acc))
# store the attack results
io.store_to_csv(results_data, attack_results)
# finally
print (' : Done, don\'t store the model')
# done.