-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_class.sh
55 lines (48 loc) · 1.71 KB
/
run_class.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
torchrun --nproc_per_node=4 --master_port=1234 train_classification.py \
--model_name_or_path Salesforce/codegen2-3_7B \
--data_path ./andrew/instruct-classification-train.json \
--output_dir results_codegen2_3_7B_classification_train \
--num_train_epochs 1 \
--per_device_train_batch_size 4 \
--per_device_eval_batch_size 4 \
--gradient_accumulation_steps 8 \
--evaluation_strategy "no" \
--gradient_checkpointing false \
--save_strategy "steps" \
--save_steps 2000 \
--save_total_limit 1 \
--learning_rate 2e-5 \
--weight_decay 0. \
--warmup_ratio 0.03 \
--fsdp "full_shard offload auto_wrap" \
--fsdp_transformer_layer_cls_to_wrap 'CodeGenBlock' \
--lr_scheduler_type "cosine" \
--logging_steps 1 \
--fp16 True
# Salesforce/codegen2-7B
# Salesforce/codegen-350M-mono
#--bf16 True \
#--fsdp_transformer_layer_cls_to_wrap 'LlamaDecoderLayer' \
# CodeGenModel
# Salesforce/codegen-6B-mono
# --gradient_checkpointing True \
# Salesforce/codet5-large
# -- fsdp_transformer_layer_cls_to_wrap 'T5Block'
# --fsdp_transformer_layer_cls_to_wrap 'CodeGenBlock'
# original LR --learning_rate 2e-5 \
# bigcode/gpt_bigcode-santacoder
# fsdp_transformer_layer_cls_to_wrap 'GPTBigCodeBlock'
# ./alpaca_data.json
# --fsdp_transformer_layer_cls_to_wrap GPTJBlock
## Inquire test train data
# --fsdp "full_shard auto_wrap" \
# --fsdp_transformer_layer_cls_to_wrap 'LlamaDecoderLayer' \
# --fp16 --sharded_ddp "zero_dp_3"
# --tf32 True
#--learning_rate 2e-5 \
# --fsdp "full_shard offload auto_wrap" \
# --fsdp_transformer_layer_cls_to_wrap 'CodeGenBlock' \
# --deepspeed "configs/dgx_config_arc.json"
# Wrap for T5s CodeT5pBlock
# Salesforce/codegen-6B-multi
# bigcode/santacoder