-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmeta_analyses.py
326 lines (270 loc) · 13.3 KB
/
meta_analyses.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
#!/usr/bin/env python
import sys, os
import pandas as pd
import numpy as np
from scipy import stats as sts
import statsmodels.api as sm
import statsmodels.formula.api as smf
from statsmodels.stats.multitest import fdrcorrection
class generalized_meta_analysis(object):
def __init__( self, \
effects, \
variances, \
study_pvalues, \
study_names, \
n_controls, \
n_cases, \
response_var, \
HET="PM", \
overlap_mat=None, \
cov="standardized_mean_diff"):
print("Caller of meta-analysis on %s" %response_var)
print("Heterogeneity: %s" %HET)
print("Number studies: %i" %len(effects))
print("Correlation matrix foreseen: ", not(overlap_mat is None))
self.effects = np.array(effects, dtype=np.float64)
self.n_cases = n_cases
self.n_controls = n_controls
if not any([(x is None) for x in self.n_cases]):
self.tot_n_cases = np.sum(self.n_cases)
if not any([(x is None) for x in self.n_controls]):
self.tot_n_ctrs = np.sum(self.n_controls)
self.study_names = study_names
print("Studies: " + " ".join(self.study_names))
self.n = len(self.study_names)
self.n_studies = self.n
self.variances = np.array(variances, dtype=np.float64)
print("Variances: is the sum zero? -> ", self.variances)
self.HET = HET
self.response_var = response_var
self.devs = np.sqrt(self.variances)
self.var_covar = None
if not any([(x is None) for x in study_pvalues]):
self.study_pvalues = np.array(study_pvalues, dtype=np.float64)
if overlap_mat is None:
self.w = np.array( [(1./v) for v in self.variances], dtype=np.float64 )
self.effects_are_iid = True
else:
self.overlap_mat = np.array(overlap_mat, dtype=np.float64)
self.var_covar = np.eye( len( self.variances ) ) * self.variances
print("Overlap of samples across studies in a two-by-two matrix: ", self.overlap_mat)
if cov == "standardized_mean_difference":
for ith in range(len(self.effects)):
for jth in range(len(self.effects)):
if ith != jth:
d_ith, d_jth = self.effects[ith], self.effects[jth]
n0 = self.overlap_mat[ith, jth]
if n0 > 0:
N = self.n_cases[ith] + self.n_cases[jth] + ( 2 * n0 )
self.var_covar[ith, jth] += ((d_ith*d_jth) / (2*( N-3 ))) + (1./n0)
elif cov == "linsullivan":
for ith in range(len(self.effects)):
for jth in range(len(self.effects)):
if ith != jth:
se_ij = self.devs[ith] * self.devs[jth]
n0 = self.overlap_mat[ith, jth]
if n0 > 0:
term_a = self.n_cases[ith] * self.n_cases[jth]
term_b = self.n_controls[ith] * self.n_controls[jth]
N = (self.n_controls[ith] + self.n_cases[ith]) * (self.n_controls[jth] + self.n_cases[jth])
self.var_covar[ith, jth] += ((n0 * np.sqrt(term_a/term_b)) / np.sqrt(N)) * (se_ij)
elif cov == "precomputed":
for ith in range(len(self.effects)):
for jth in range(len(self.effects)):
if ith != jth:
self.var_covar[ith, jth] += self.overlap_mat[ith, jth]
else:
raise NotImplementedError("Cov = %s is not implemented." %cov)
print("Parameters following the correlated structure: ")
print("Reconstructed Var-Covar matrix: ", self.var_covar)
#### THESE TWO ARE FOR THE COVARIANCE MATRIX OF THE WEIGTHS
self.e = np.ones(len(self.variances), dtype=np.float64)
#print(self.e)
#print(self.var_covar)
#print(np.dot(self.e, self.var_covar))
#print("/", np.dot(np.dot(self.e, self.var_covar), self.e))
inv_cov_mat = np.linalg.inv(self.var_covar)
self.w = np.dot(self.e, inv_cov_mat) / np.dot(np.dot(self.e, inv_cov_mat), self.e)
self.effects_are_iid = False
print("Weights: ", " ".join(list(map(str, self.w))))
mu_bar = np.sum(a*b for a,b in zip(self.w, self.effects))/np.sum(self.w)
self.Q = np.sum(a*b for a,b in zip(self.w, [(x - mu_bar)**2 for x in self.effects]))
self.Qtest = 2.*(1 - sts.chi2.cdf(np.abs(self.Q), len(self.effects)-1))
#### H = np.sqrt(self.Q/(self.n - 1))
#print("variances: ", self.variances)
#print(self.Q, " Q")
#print(len(variances) - 1, "len var minus one")
self.I2 = np.max([0., (self.Q-(len(self.variances)-1))/float(self.Q)])
self.t2_PM, self.t2PM_conv = paule_mandel_tau(self.effects, self.variances)
self.t2_DL = ((self.Q - self.n + 1) / self.scaling( self.w )) if (self.Q > (self.n-1)) else 0.
if self.effects_are_iid:
if self.HET == "PM": self.W = [(1./float(v+self.t2_PM)) for v in self.variances]
elif self.HET.startswith("FIX"): self.W = [(1./float(v)) for v in self.variances]
else: self.W = [(1./float(v+self.t2_DL)) for v in self.variances]
print("Weights: ", " ".join(list(map(str, self.W))))
self.RE = np.sum(self.W*self.effects)/float(np.sum(self.W))
self.RE_Var = 1./float(np.sum(self.W))
else:
self.W = self.w
self.RE = np.sum(self.W*self.effects)
self.RE_Var = 0.
for ith in range(len(self.effects)):
for jth in range(len(self.effects)):
#if ith != jth: ## EITHER WE JUST SUM THE UPPER TRIANGLE
if ith != jth:
self.RE_Var += (self.W[ith] * self.W[jth] * self.var_covar[ith, jth]) ## WE DO NOT MULTIPLY BY TWO BECAUSE WE ARE ADDING DOUBLE THE TABLE
else:
self.RE_Var += (self.W[ith] * self.W[jth] * self.variances[ith])
print("Random/Fixed Effect model main coefficient: ", self.RE)
print("First round of computation of variance led to: ", self.RE_Var, end="\n" if self.effects_are_iid else " ")
print("The effect variance: ", self.RE_Var)
self.stdErr = np.sqrt(self.RE_Var)
self.Zscore = self.RE/self.stdErr
print("Meta-analysis Zeta score: ", self.Zscore)
self.Pval = 2.*(1 - sts.norm.cdf(np.abs(self.Zscore)))
print("Meta-analysis p value: ", self.Pval)
self.conf_int = [self.RE - 1.96*self.stdErr, self.RE + 1.96*self.stdErr]
print("\n*+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*.\n")
def tot_var(self, Effects, Weights):
Q = np.sum(Weights * [x**2 for x in Effects]) - ((np.sum(Weights*Effects)**2)/np.sum(Weights))
return Q
def scaling(self, W):
C = np.sum(W) - (np.sum([w**2 for w in W])/float(np.sum(W)))
return C
def tau_squared_DL(self, Q, df, C):
return (Q-df)/float(C) if (Q>df) else 0.
def CombinedEffect(self):
return np.sum(self.W*self.effects)/float(np.sum(self.W))
def pretty_one_feat_print(self):
_,fdr = fdrcorrection(self.study_pvalues)
pp = { \
"effect": list(self.effects) + [self.RE],
"se": list(self.devs) + [self.stdErr],
"p-val": list(self.study_pvalues) + [self.Pval],
"q-val": list(fdr) + [self.Pval],
"n_ctrs": list(self.n_controls) + [self.tot_n_ctrs],
"n_cases": list(self.n_cases) + [self.tot_n_cases],
"response": self.response_var,
}
return pd.DataFrame(pp, index=list(self.study_names) + ["summary"])
def pretty_print(self):
NS = {}
for eff,std,P,study in zip(self.effects, self.devs, self.study_pvalues, self.study_names):
NS[str(study) + "_Effect"] = eff
NS[str(study) + "_Pvalue"] = P
NS[str(study) + "_SE"] = std
NS["RE_Effect"] = self.RE
NS["RE_Pvalue"] = self.Pval
NS["RE_stdErr"] = self.stdErr
NS["RE_conf_int"] = ";".join(list(map(str,self.conf_int)))
NS["RE_Var"] = self.RE_Var
NS["Zscore"] = self.Zscore
if self.effects_are_iid:
NS["Tau2_DL"] = self.t2_DL
NS["Tau2_PM"] = self.t2_PM
NS["I2"] = self.I2
NS["Q"] = self.Qtest
NS = pd.DataFrame(NS, index=[self.response_var])
return NS
class correlation_meta_analysis(object):
def __init__(self, rhos, ers, n_studies, pvals, studies, response_name, het="PM"):
self.HET = het
self.responseName = response_name
self.studies = studies
self.study_pvalues = pvals
self.effects = np.arctanh(np.array(rhos, dtype=np.float64)) if not ers else np.array(rhos, dtype=np.float64)
self.n_studies = n_studies
self.n = float(len(studies))
if not ers:
self.vi = np.array([(1./float(n-3)) for n in self.n_studies], dtype=np.float64)
self.devs = np.sqrt(self.vi)
else:
self.devs = np.array(ers, dtype=np.float64)
self.vi = self.devs**2.
#self.vi = np.array([(1./float(n-1)) for n in self.n_studies], dtype=np.float64)
self.w = np.array([(1./float(v)) for v in self.vi], dtype=np.float64)
mu_bar = np.sum(a*b for a,b in zip(self.w, self.effects))/np.sum(self.w)
self.Q = np.sum(a*b for a,b in zip(self.w, [(x - mu_bar)**2 for x in self.effects]))
self.Qtest = 2.*(1 - sts.chi2.cdf(np.abs(self.Q), len(self.effects)-1))
H = np.sqrt(self.Q/(self.n - 1))
self.I2 = np.max([0., (self.Q-(len(self.vi)-1))/float(self.Q)])
self.t2_PM, self.t2PM_conv = paule_mandel_tau(self.effects, self.vi)
self.t2_DL = ((self.Q - self.n + 1) / self.scaling( self.w )) if (self.Q > (self.n-1)) else 0.
if self.HET == "PM":
self.W = [(1./float(v+self.t2_PM)) for v in self.vi]
elif self.HET.startswith("FIX"):
self.W = [(1./float(v)) for v in self.vi]
else:
self.W = [(1./float(v+self.t2_DL)) for v in self.vi]
print("Weights: ", " ".join(list(map(str, self.W))))
self.RE = np.sum(self.W*self.effects)/float(np.sum(self.W))
self.RE_Var = 1./float(np.sum(self.W))
print("Random/Fixed Effect model main coefficient: ", self.RE)
print("First round of computation of variance led to: ", self.RE_Var, end="\n")
print("The effect variance: ", self.RE_Var)
self.stdErr = np.sqrt(self.RE_Var)
self.Zscore = self.RE/self.stdErr
print("Meta-analysis Zeta score: ", self.Zscore)
self.Pval = 2.*(1 - sts.norm.cdf(np.abs(self.Zscore)))
print("Meta-analysis p value: ", self.Pval)
self.conf_int = [self.RE - 1.96*self.stdErr, self.RE + 1.96*self.stdErr]
#self.result = self.nice_shape(True)
def scaling(self, W):
C = np.sum(W) - (np.sum([w**2 for w in W])/float(np.sum(W)))
return C
def tau_squared_DL(self, Q, df, C):
return (Q-df)/float(C) if (Q>df) else 0.
def pretty_one_feat_print(self):
_,fdr = fdrcorrection(self.study_pvalues)
pp = { \
"effect": list(self.effects) + [self.RE],
"se": list(self.devs) + [self.stdErr],
"p-val": list(self.study_pvalues) + [self.Pval],
"q-val": list(fdr) + [self.Pval],
"n_s": self.n_studies + [np.sum(self.n_studies)],
"response": self.response_var,
}
return pd.DataFrame(pp, index=list(self.study_names) + ["summary"])
def pretty_print(self):
NS = {}
for rho,std,P,study in zip(self.effects, self.devs, self.study_pvalues, self.studies):
NS[study + "_Correlation"] = np.tanh(rho)
NS[study + "_Pvalue"] = P
NS[study + "_SE"] = np.tanh(std)
NS["RE_Correlation"] = np.tanh(self.RE)
NS["RE_Pvalue"] = self.Pval
NS["RE_stdErr"] = np.tanh(self.stdErr)
NS["RE_conf_int"] = ";".join(list(map(str, [np.tanh(c) for c in self.conf_int])))
NS["RE_Var"] = np.tanh(self.RE_Var)
NS["Zscore"] = self.Zscore
NS["Tau2_DL"] = self.t2_DL
NS["Tau2_PM"] = self.t2_PM
NS["I2"] = self.I2
NS["Q"] = self.Qtest
NS = pd.DataFrame(NS, index=[self.responseName])
return NS
## DISCLAIMER ##
## FOLLOWING CODE FOR PAULE MANDEL TAU WAS TAKEN DIRECTLY FROM statsmodels library
## I DON T OWN THIS CODE
def paule_mandel_tau(eff, var_eff, tau2_start=0, atol=1e-5, maxiter=50):
tau2 = tau2_start
k = eff.shape[0]
converged = False
for i in range(maxiter):
w = 1 / (var_eff + tau2)
m = w.dot(eff) / w.sum(0)
resid_sq = (eff - m)**2
q_w = w.dot(resid_sq)
# estimating equation
ee = q_w - (k - 1)
if ee < 0:
tau2 = 0
converged = 0
break
if np.allclose(ee, 0, atol=atol):
converged = True
break
# update tau2
delta = ee / (w**2).dot(resid_sq)
tau2 += delta
return tau2, converged