forked from nrfconnect/sdk-nrf
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathslm_at_host.c
992 lines (820 loc) · 21.9 KB
/
slm_at_host.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
/*
* Copyright (c) 2019 Nordic Semiconductor ASA
*
* SPDX-License-Identifier: LicenseRef-Nordic-5-Clause
*/
#include "slm_at_host.h"
#include "slm_at_fota.h"
#include "slm_uart_handler.h"
#include "slm_util.h"
#if defined(CONFIG_SLM_PPP)
#include "slm_ppp.h"
#endif
#include <assert.h>
#include <stdio.h>
#include <string.h>
#include <zephyr/drivers/uart.h>
#include <zephyr/kernel.h>
#include <zephyr/logging/log.h>
#include <zephyr/pm/device.h>
#include <zephyr/sys/ring_buffer.h>
LOG_MODULE_REGISTER(slm_at_host, CONFIG_SLM_LOG_LEVEL);
#define SLM_SYNC_STR "Ready\r\n"
#define OK_STR "\r\nOK\r\n"
#define ERROR_STR "\r\nERROR\r\n"
#define CRLF_STR "\r\n"
#define CR '\r'
#define LF '\n'
#define HEXDUMP_LIMIT 16
/* Operation mode variables */
enum slm_operation_mode {
SLM_AT_COMMAND_MODE, /* AT command host or bridge */
SLM_DATA_MODE, /* Raw data sending */
SLM_NULL_MODE /* Discard incoming until next command */
};
static struct slm_at_backend at_backend;
static enum slm_operation_mode at_mode;
static slm_datamode_handler_t datamode_handler;
static int datamode_handler_result;
uint16_t slm_datamode_time_limit; /* Send trigger by time in data mode */
K_MUTEX_DEFINE(mutex_mode); /* Protects the operation mode variables. */
uint8_t slm_at_buf[SLM_AT_MAX_CMD_LEN + 1];
uint8_t slm_data_buf[SLM_MAX_MESSAGE_SIZE];
RING_BUF_DECLARE(data_rb, CONFIG_SLM_DATAMODE_BUF_SIZE);
static uint8_t quit_str_partial_match;
K_MUTEX_DEFINE(mutex_data); /* Protects the data_rb and quit_str_partial_match. */
static struct k_work raw_send_scheduled_work;
/* global functions defined in different files */
int slm_at_init(void);
void slm_at_uninit(void);
static enum slm_operation_mode get_slm_mode(void)
{
enum slm_operation_mode mode;
k_mutex_lock(&mutex_mode, K_FOREVER);
mode = at_mode;
k_mutex_unlock(&mutex_mode);
return mode;
}
/* Lock mutex_mode, before calling. */
static bool set_slm_mode(enum slm_operation_mode mode)
{
bool ret = false;
if (at_mode == SLM_AT_COMMAND_MODE) {
if (mode == SLM_DATA_MODE) {
ret = true;
}
} else if (at_mode == SLM_DATA_MODE) {
if (mode == SLM_NULL_MODE || mode == SLM_AT_COMMAND_MODE) {
ret = true;
}
} else if (at_mode == SLM_NULL_MODE) {
if (mode == SLM_AT_COMMAND_MODE || mode == SLM_NULL_MODE) {
ret = true;
}
}
if (ret) {
LOG_DBG("SLM mode changed: %d -> %d", at_mode, mode);
at_mode = mode;
} else {
LOG_ERR("Failed to change SLM mode: %d -> %d", at_mode, mode);
}
return ret;
}
static bool exit_datamode(void)
{
bool ret = false;
k_mutex_lock(&mutex_mode, K_FOREVER);
if (set_slm_mode(SLM_AT_COMMAND_MODE)) {
if (datamode_handler) {
(void)datamode_handler(DATAMODE_EXIT, NULL, 0, SLM_DATAMODE_FLAGS_NONE);
}
datamode_handler = NULL;
k_mutex_lock(&mutex_data, K_FOREVER);
ring_buf_reset(&data_rb);
k_mutex_unlock(&mutex_data);
rsp_send("\r\n#XDATAMODE: %d\r\n", datamode_handler_result);
datamode_handler_result = 0;
LOG_INF("Exit datamode");
ret = true;
}
k_mutex_unlock(&mutex_mode);
return ret;
}
/* Lock mutex_data, before calling. */
static void raw_send(uint8_t flags)
{
uint8_t *data = NULL;
int size_send, size_sent, size_all, size_finish;
/* NOTE ring_buf_get_claim() might not return full size */
do {
size_all = ring_buf_size_get(&data_rb);
size_send = ring_buf_get_claim(&data_rb, &data, CONFIG_SLM_DATAMODE_BUF_SIZE);
if (size_all != size_send) {
flags |= SLM_DATAMODE_FLAGS_MORE_DATA;
}
LOG_INF("Raw send: size_send: %d, data %p", size_send, (void *)data);
if (data != NULL && size_send > 0) {
/* Raw data sending */
size_finish = 0;
LOG_HEXDUMP_DBG(data, MIN(size_send, HEXDUMP_LIMIT), "RX");
k_mutex_lock(&mutex_mode, K_FOREVER);
if (datamode_handler && size_send > 0) {
size_sent = datamode_handler(DATAMODE_SEND, data, size_send, flags);
if (size_sent > 0) {
size_finish += size_sent;
} else if (size_sent == 0) {
size_finish += size_send;
} else {
LOG_WRN("Raw send failed, %d dropped", size_send);
size_finish += size_send;
}
(void)ring_buf_get_finish(&data_rb, size_finish);
} else {
LOG_WRN("no handler, %d dropped", size_send);
(void)ring_buf_get_finish(&data_rb, size_send + size_finish);
}
k_mutex_unlock(&mutex_mode);
#if defined(CONFIG_SLM_DATAMODE_URC)
rsp_send("\r\n#XDATAMODE: %d\r\n", size_finish);
#endif
} else {
break;
}
} while (true);
}
/* Lock mutex_data, before calling. */
static void write_data_buf(const uint8_t *buf, size_t len)
{
size_t ret;
size_t index = 0;
while (index < len) {
ret = ring_buf_put(&data_rb, buf + index, len - index);
if (ret) {
index += ret;
} else {
/* Buffer is full. Send data.*/
raw_send(SLM_DATAMODE_FLAGS_MORE_DATA);
}
}
}
static void raw_send_scheduled(struct k_work *work)
{
ARG_UNUSED(work);
k_mutex_lock(&mutex_data, K_FOREVER);
/* Interpret partial quit_str as data, if we send due to timeout. */
if (quit_str_partial_match > 0) {
write_data_buf(CONFIG_SLM_DATAMODE_TERMINATOR, quit_str_partial_match);
quit_str_partial_match = 0;
}
raw_send(SLM_DATAMODE_FLAGS_NONE);
k_mutex_unlock(&mutex_data);
}
static void inactivity_timer_handler(struct k_timer *timer)
{
ARG_UNUSED(timer);
LOG_INF("time limit reached");
if (!ring_buf_is_empty(&data_rb)) {
k_work_submit(&raw_send_scheduled_work);
} else {
LOG_DBG("data buffer empty");
}
}
K_TIMER_DEFINE(inactivity_timer, inactivity_timer_handler, NULL);
/* Search for quit_str and send data prior to that. Tracks quit_str over several calls. */
static size_t raw_rx_handler(const uint8_t *buf, const size_t len)
{
k_mutex_lock(&mutex_data, K_FOREVER);
const char *const quit_str = CONFIG_SLM_DATAMODE_TERMINATOR;
size_t processed;
bool quit_str_match = false;
uint8_t quit_str_match_count = quit_str_partial_match;
uint8_t prev_quit_str_match_count = quit_str_partial_match;
uint8_t prev_quit_str_match_count_original = quit_str_partial_match;
/* Find quit_str or partial match at the end of the buffer. */
for (processed = 0; processed < len && quit_str_match == false; processed++) {
if (buf[processed] == quit_str[quit_str_match_count]) {
quit_str_match_count++;
if (quit_str_match_count == strlen(quit_str)) {
quit_str_match = true;
}
} else if (quit_str_match_count > 0) {
/* Check if we match a beginning of a new quit_str.
* We either match the first character, or in the edge case of
* quit_str starting with multiple same characters, e.g. "aaabbb",
* we match all but the current character (with input aaaa).
*/
for (int i = 0; i < quit_str_match_count; i++) {
if (buf[processed] != quit_str[i]) {
quit_str_match_count = i;
break;
}
}
if (quit_str_match_count == 0) {
/* No match.
* Previous partial quit_str is data.
*/
prev_quit_str_match_count = 0;
} else if (prev_quit_str_match_count > 0) {
/* Partial match.
* Part of the previous partial quit_str is data.
*/
prev_quit_str_match_count--;
}
}
}
/* Write data which was previously interpreted as a possible partial quit_str. */
write_data_buf(quit_str, prev_quit_str_match_count_original - prev_quit_str_match_count);
/* Write data from buf until the start of the possible (partial) quit_str. */
write_data_buf(buf, processed - (quit_str_match_count - prev_quit_str_match_count));
if (quit_str_match) {
raw_send(SLM_DATAMODE_FLAGS_NONE);
(void)exit_datamode();
quit_str_partial_match = 0;
} else {
quit_str_partial_match = quit_str_match_count;
}
k_mutex_unlock(&mutex_data);
return processed;
}
/*
* Check AT command grammar based on below.
* AT<NULL>
* AT<separator><body><NULL>
* AT<separator><body>=<NULL>
* AT<separator><body>?<NULL>
* AT<separator><body>=?<NULL>
* AT<separator><body>=<parameters><NULL>
* In which
* <separator>: +, %, #
* <body>: alphanumeric char only, size > 0
* <parameters>: arbitrary, size > 0
*/
static int cmd_grammar_check(const char *cmd, size_t length)
{
const char *body;
/* check AT (if not, no check) */
if (length < 2 || toupper((int)cmd[0]) != 'A' || toupper((int)cmd[1]) != 'T') {
return -EINVAL;
}
/* check AT<NULL> */
cmd += 2;
if (*cmd == '\0') {
return 0;
}
/* check AT<separator> */
if ((*cmd != '+') && (*cmd != '%') && (*cmd != '#')) {
return -EINVAL;
}
/* check AT<separator><body> */
cmd += 1;
body = cmd;
while (true) {
/* check body is alphanumeric */
if (!isalpha((int)*cmd) && !isdigit((int)*cmd)) {
break;
}
cmd++;
}
/* check body size > 0 */
if (cmd == body) {
return -EINVAL;
}
/* check AT<separator><body><NULL> */
if (*cmd == '\0') {
return 0;
}
/* check AT<separator><body>= or check AT<separator><body>? */
if (*cmd != '=' && *cmd != '?') {
return -EINVAL;
}
/* check AT<separator><body>?<NULL> */
if (*cmd == '?') {
cmd += 1;
if (*cmd == '\0') {
return 0;
} else {
return -EINVAL;
}
}
/* check AT<separator><body>=<NULL> */
cmd += 1;
if (*cmd == '\0') {
return 0;
}
/* check AT<separator><body>=?<NULL> */
if (*cmd == '?') {
cmd += 1;
if (*cmd == '\0') {
return 0;
} else {
return -EINVAL;
}
}
/* no need to check AT<separator><body>=<parameters><NULL> */
return 0;
}
static char *strrstr(const char *str1, const char *str2)
{
size_t len1;
size_t len2;
if (str1 == NULL || str2 == NULL) {
return NULL;
}
len1 = strlen(str1);
len2 = strlen(str2);
if (len2 > len1 || len1 == 0 || len2 == 0) {
return NULL;
}
for (int i = len1 - len2; i >= 0; i--) {
if (strncmp(str1 + i, str2, len2) == 0) {
return (char *)str1 + i;
}
}
return NULL;
}
static void format_final_result(char *buf, size_t buf_len, size_t buf_max_len)
{
static const char ok_str[] = "OK\r\n";
static const char error_str[] = "ERROR\r\n";
static const char cme_error_str[] = "+CME ERROR:";
static const char cms_error_str[] = "+CMS ERROR:";
char *result = NULL;
result = strrstr(buf, ok_str);
if (result == NULL) {
result = strrstr(buf, error_str);
}
if (result == NULL) {
result = strrstr(buf, cme_error_str);
}
if (result == NULL) {
result = strrstr(buf, cms_error_str);
}
if (result == NULL) {
LOG_WRN("Final result not found");
return;
}
/* insert CRLF before final result if there is information response before it */
if (result != buf + strlen(CRLF_STR)) {
if (buf_len + strlen(CRLF_STR) < buf_max_len) {
memmove((void *)(result + strlen(CRLF_STR)), (void *)result,
strlen(result));
result[0] = CR;
result[1] = LF;
buf_len += strlen(CRLF_STR);
buf[buf_len] = '\0';
} else {
LOG_WRN("No room to insert CRLF");
}
}
}
static void restore_at_backend(void)
{
const int err = at_backend.start();
if (err) {
LOG_ERR("Failed to restore AT backend. (%d) Resetting.", err);
slm_reset();
}
}
static int stop_at_backend(void)
{
const int err = at_backend.stop();
if (!err) {
/* Wait for UART disabling to complete. */
k_sleep(K_MSEC(100));
}
return err;
}
int slm_at_set_backend(const struct slm_at_backend new_backend)
{
const struct slm_at_backend old_backend = at_backend;
int ret;
if (old_backend.start) {
ret = stop_at_backend();
if (ret) {
LOG_ERR("Failed to stop previous AT backend. (%d)", ret);
return ret;
}
}
at_backend = new_backend;
ret = new_backend.start();
if (ret) {
LOG_ERR("Failed to start AT backend. (%d)", ret);
stop_at_backend();
at_backend = old_backend;
restore_at_backend();
}
return ret;
}
static int slm_at_send_indicate(const uint8_t *data, size_t len,
bool print_full_debug, bool indicate)
{
int ret;
if (k_is_in_isr()) {
LOG_ERR("FIXME: Attempt to send AT response (of size %u) in ISR.", len);
return -EINTR;
} else if (at_backend.send == NULL) {
LOG_ERR("Attempt to send via an uninitialized AT backend");
return -EFAULT;
}
if (indicate) {
enum pm_device_state state = PM_DEVICE_STATE_OFF;
pm_device_state_get(slm_uart_dev, &state);
if (state != PM_DEVICE_STATE_ACTIVE) {
slm_indicate();
}
}
ret = at_backend.send(data, len);
if (!ret) {
LOG_HEXDUMP_DBG(data, print_full_debug ? len : MIN(HEXDUMP_LIMIT, len), "TX");
}
return ret;
}
int slm_at_send(const uint8_t *data, size_t len)
{
return slm_at_send_indicate(data, len, true, false);
}
int slm_at_send_str(const char *str)
{
return slm_at_send(str, strlen(str));
}
static void cmd_send(uint8_t *buf, size_t cmd_length, size_t buf_size)
{
int err;
size_t offset = 0;
char *at_cmd = buf;
LOG_HEXDUMP_DBG(buf, cmd_length, "RX");
/* UART can send additional characters when the device is powered on.
* We ignore everything before the start of the AT-command.
*/
while (offset + 1 < cmd_length) {
if (toupper(buf[offset]) == 'A' && toupper(buf[offset + 1]) == 'T') {
at_cmd += offset;
cmd_length -= offset;
break;
}
offset++;
}
if (cmd_grammar_check(at_cmd, cmd_length) != 0) {
LOG_ERR("AT command syntax invalid: %s", at_cmd);
rsp_send_error();
return;
}
/* Send to modem, reserve space for CRLF in response buffer */
err = nrf_modem_at_cmd(buf + strlen(CRLF_STR), buf_size - strlen(CRLF_STR), "%s", at_cmd);
if (err == -SILENT_AT_COMMAND_RET) {
return;
} else if (err < 0) {
LOG_ERR("AT command failed: %d", err);
rsp_send_error();
return;
} else if (err > 0) {
LOG_ERR("AT command error, type: %d", nrf_modem_at_err_type(err));
}
/** Format as TS 27.007 command V1 with verbose response format,
* based on current return of API nrf_modem_at_cmd() and MFWv1.3.x
*/
buf[0] = CR;
buf[1] = LF;
if (strlen(buf) > strlen(CRLF_STR)) {
format_final_result(buf, strlen(buf), buf_size);
err = slm_at_send_str(buf);
if (err) {
LOG_ERR("AT command response failed: %d", err);
}
}
}
static size_t cmd_rx_handler(const uint8_t *buf, const size_t len)
{
size_t processed;
static bool inside_quotes;
static size_t at_cmd_len;
static uint8_t prev_character;
bool send = false;
for (processed = 0; processed < len && send == false; processed++) {
/* Handle control characters */
switch (buf[processed]) {
case 0x08: /* Backspace. */
/* Fall through. */
case 0x7F: /* DEL character */
if (at_cmd_len > 0) {
at_cmd_len--;
}
continue;
}
/* Handle termination characters, if outside quotes. */
if (!inside_quotes) {
switch (buf[processed]) {
case '\r':
if (IS_ENABLED(CONFIG_SLM_CR_TERMINATION)) {
send = true;
}
break;
case '\n':
if (IS_ENABLED(CONFIG_SLM_LF_TERMINATION)) {
send = true;
} else if (IS_ENABLED(CONFIG_SLM_CR_LF_TERMINATION)) {
if (at_cmd_len > 0 && prev_character == '\r') {
at_cmd_len--; /* trim the CR char */
send = true;
}
}
break;
}
}
if (send == false) {
/* Write character to AT buffer, leave space for null */
if (at_cmd_len < sizeof(slm_at_buf) - 1) {
slm_at_buf[at_cmd_len] = buf[processed];
}
at_cmd_len++;
/* Handle special written character */
if (buf[processed] == '"') {
inside_quotes = !inside_quotes;
}
prev_character = buf[processed];
}
}
if (send) {
if (at_cmd_len > sizeof(slm_at_buf) - 1) {
LOG_ERR("AT command buffer overflow, %d dropped", at_cmd_len);
rsp_send_error();
} else if (at_cmd_len > 0) {
slm_at_buf[at_cmd_len] = '\0';
cmd_send(slm_at_buf, at_cmd_len, sizeof(slm_at_buf));
} else {
/* Ignore 0 size command. */
}
inside_quotes = false;
at_cmd_len = 0;
}
return processed;
}
/* Search for quit_str and exit datamode when one is found. */
static size_t null_handler(const uint8_t *buf, const size_t len)
{
const char *const quit_str = CONFIG_SLM_DATAMODE_TERMINATOR;
static size_t dropped_count;
static uint8_t match_count;
size_t processed;
bool match = false;
if (dropped_count == 0) {
LOG_WRN("Data pipe broken. Dropping data until datamode is terminated.");
}
for (processed = 0; processed < len && match == false; processed++) {
if (buf[processed] == quit_str[match_count]) {
match_count++;
if (match_count == strlen(quit_str)) {
match = true;
}
} else {
match_count = 0;
}
dropped_count++;
}
if (match) {
dropped_count -= strlen(quit_str);
dropped_count += ring_buf_size_get(&data_rb);
LOG_WRN("Terminating datamode, %d dropped", dropped_count);
(void)exit_datamode();
match_count = 0;
dropped_count = 0;
}
return processed;
}
void slm_at_receive(const uint8_t *buf, size_t len)
{
size_t ret = 0;
k_timer_stop(&inactivity_timer);
while (len > 0) {
switch (get_slm_mode()) {
case SLM_AT_COMMAND_MODE:
ret = cmd_rx_handler(buf, len);
break;
case SLM_DATA_MODE:
ret = raw_rx_handler(buf, len);
break;
case SLM_NULL_MODE:
ret = null_handler(buf, len);
break;
}
assert(ret <= len);
buf += ret;
len -= ret;
}
/* start inactivity timer in datamode */
if (get_slm_mode() == SLM_DATA_MODE) {
k_timer_start(&inactivity_timer, K_MSEC(slm_datamode_time_limit), K_NO_WAIT);
}
}
AT_MONITOR(at_notify, ANY, notification_handler);
static void notification_handler(const char *notification)
{
if (get_slm_mode() == SLM_AT_COMMAND_MODE) {
#if defined(CONFIG_SLM_PPP)
if (!slm_fwd_cgev_notifs
&& !strncmp(notification, "+CGEV: ", strlen("+CGEV: "))) {
/* CGEV notifications are silenced. Do not forward them. */
return;
}
#endif
slm_at_send_indicate(CRLF_STR, strlen(CRLF_STR), true, true);
slm_at_send_str(notification);
}
}
void rsp_send_ok(void)
{
slm_at_send_str(OK_STR);
}
void rsp_send_error(void)
{
slm_at_send_str(ERROR_STR);
}
void rsp_send(const char *fmt, ...)
{
static K_MUTEX_DEFINE(mutex_rsp_buf);
static char rsp_buf[SLM_AT_MAX_RSP_LEN];
int rsp_len;
k_mutex_lock(&mutex_rsp_buf, K_FOREVER);
va_list arg_ptr;
va_start(arg_ptr, fmt);
rsp_len = vsnprintf(rsp_buf, sizeof(rsp_buf), fmt, arg_ptr);
rsp_len = MIN(rsp_len, sizeof(rsp_buf) - 1);
va_end(arg_ptr);
slm_at_send(rsp_buf, rsp_len);
k_mutex_unlock(&mutex_rsp_buf);
}
void data_send(const uint8_t *data, size_t len)
{
slm_at_send_indicate(data, len, false, true);
}
int enter_datamode(slm_datamode_handler_t handler)
{
k_mutex_lock(&mutex_mode, K_FOREVER);
if (handler == NULL || datamode_handler != NULL || set_slm_mode(SLM_DATA_MODE) == false) {
LOG_INF("Invalid, not enter datamode");
k_mutex_unlock(&mutex_mode);
return -EINVAL;
}
k_mutex_lock(&mutex_data, K_FOREVER);
ring_buf_reset(&data_rb);
k_mutex_unlock(&mutex_data);
datamode_handler = handler;
if (slm_datamode_time_limit == 0) {
if (slm_uart_baudrate > 0) {
slm_datamode_time_limit = CONFIG_SLM_UART_RX_BUF_SIZE * (8 + 1 + 1) * 1000 /
slm_uart_baudrate;
slm_datamode_time_limit += UART_RX_MARGIN_MS;
} else {
LOG_WRN("Baudrate not set");
slm_datamode_time_limit = 1000;
}
}
LOG_INF("Enter datamode");
k_mutex_unlock(&mutex_mode);
return 0;
}
bool in_datamode(void)
{
return (get_slm_mode() == SLM_DATA_MODE);
}
bool exit_datamode_handler(int result)
{
bool ret = false;
k_mutex_lock(&mutex_mode, K_FOREVER);
if (set_slm_mode(SLM_NULL_MODE)) {
if (datamode_handler) {
datamode_handler(DATAMODE_EXIT, NULL, 0, SLM_DATAMODE_FLAGS_EXIT_HANDLER);
}
datamode_handler = NULL;
datamode_handler_result = result;
ret = true;
}
k_mutex_unlock(&mutex_mode);
return ret;
}
bool verify_datamode_control(uint16_t time_limit, uint16_t *min_time_limit)
{
int min_time;
if (slm_uart_baudrate == 0) {
LOG_ERR("Baudrate not set");
return false;
}
min_time = CONFIG_SLM_UART_RX_BUF_SIZE * (8 + 1 + 1) * 1000 / slm_uart_baudrate;
min_time += UART_RX_MARGIN_MS;
if (time_limit > 0 && min_time > time_limit) {
LOG_ERR("Invalid time_limit: %d, min: %d", time_limit, min_time);
return false;
}
if (min_time_limit) {
*min_time_limit = min_time;
}
return true;
}
int slm_at_cb_wrapper(char *buf, size_t len, char *at_cmd, slm_at_callback *cb)
{
int err;
struct at_parser parser;
size_t valid_count = 0;
enum at_parser_cmd_type type;
assert(cb);
err = at_parser_init(&parser, at_cmd);
if (err) {
return err;
}
err = at_parser_cmd_count_get(&parser, &valid_count);
if (err) {
return err;
}
err = at_parser_cmd_type_get(&parser, &type);
if (err) {
return err;
}
err = cb(type, &parser, valid_count);
if (!err) {
err = at_cmd_custom_respond(buf, len, "OK\r\n");
if (err) {
LOG_ERR("Failed to set OK response: %d", err);
}
}
return err;
}
int slm_at_host_init(void)
{
int err;
k_mutex_lock(&mutex_mode, K_FOREVER);
slm_datamode_time_limit = 0;
datamode_handler = NULL;
at_mode = SLM_AT_COMMAND_MODE;
k_mutex_unlock(&mutex_mode);
err = slm_at_init();
if (err) {
return -EFAULT;
}
k_work_init(&raw_send_scheduled_work, raw_send_scheduled);
err = slm_uart_handler_enable();
if (err) {
return err;
}
if (!IS_ENABLED(CONFIG_SLM_SKIP_READY_MSG)) {
/* Send Ready string to indicate that AT host is ready */
err = slm_at_send_str(SLM_SYNC_STR);
if (err) {
return err;
}
}
/* This is here and not earlier because in case of firmware
* update it will send an AT response so the UART must be up.
*/
slm_fota_post_process();
LOG_INF("at_host init done");
return 0;
}
static int at_host_power_off(bool shutting_down)
{
int err = stop_at_backend();
if (!err || shutting_down) {
/* Power off UART module */
err = pm_device_action_run(slm_uart_dev, PM_DEVICE_ACTION_SUSPEND);
if (err == -EALREADY) {
err = 0;
}
if (err) {
LOG_WRN("Failed to suspend UART. (%d)", err);
if (!shutting_down) {
restore_at_backend();
}
}
}
return err;
}
int slm_at_host_power_off(void)
{
const int err = at_host_power_off(false);
/* Write sync str to buffer so it is sent first when resuming. */
slm_at_send_str(SLM_SYNC_STR);
return err;
}
int slm_at_host_power_on(void)
{
const int err = pm_device_action_run(slm_uart_dev, PM_DEVICE_ACTION_RESUME);
if (err && err != -EALREADY) {
LOG_ERR("Failed to resume UART. (%d)", err);
return err;
}
/* Wait for UART enabling to complete. */
k_sleep(K_MSEC(100));
restore_at_backend();
return 0;
}
void slm_at_host_uninit(void)
{
k_mutex_lock(&mutex_mode, K_FOREVER);
if (at_mode == SLM_DATA_MODE) {
k_timer_stop(&inactivity_timer);
}
datamode_handler = NULL;
k_mutex_unlock(&mutex_mode);
slm_at_uninit();
at_host_power_off(true);
LOG_DBG("at_host uninit done");
}