-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathsnpm_combo_pp.m
1036 lines (895 loc) · 33.4 KB
/
snpm_combo_pp.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
function snpm_combo_pp(CWD, job)
% SnPM post processing and results display
% FORMAT snpm_combo_pp(CWD)
%
% CWD - Directory containing SnPM results files
%
% If CWD is not specified then user is prompted to locate results file SnPM.mat
%
%___________________________________________________________________
%
% snpm_combo_pp.m is the post-processing function for combined
% voxel-cluster size inference. This program is a modified version
% of snpm_pp.m used in SnPM.
%
% Before using this program, first you should have run the "setup" and
% "compute" steps of SnPM. In the setup step, you should specify
% to assess cluster extent. Otherwise you will not be able to
% perform a cluster size test, and thus no combined test either.
%
% Based on SnPM_ST.mat, the supra-threshold portion of all the
% realizations, this program calculates, (a) partial test p-values
% or voxel test p-values and cluster size test p-values, then
% (b) combined functions based on p-values from (a), then (c)
% calculates p-values for combined tests, and finally (d)
% calculates the meta-combining function and perform the meta-
% combined test. This program stores information from all the
% clusters in all the permutations. So for the steps (c)-(d),
% this recorded cluster information is used without doing
% further permutations.
%
% theta = 0.5 corresponds to the equally weighted statistics, For theta > 0.5,
% the combining function becomes more sensitive to high intensity peaks;
% whereas for theta < 0.5, the combining function becomes more sensitive to
% large clusters. For theta = 0, the test becomes a cluster size test and
% for theta = 1, the test becomes a peak intensity test.
%
% Details regarding the combined and meta-combined tests
% are found in
%
% Hayasaka S, and Nichols TE. (2004)
% Combining Voxel Intensity and Cluster Extent with
% Permutation Test Framework.
%
% THIS IS A BETA VERSION. THE PROGRAM IS STILL BEING TESTED!
%
%_______________________________________________________________________
% Copyright (C) 2013 The University of Warwick
% Id: snpm_combo_pp.m SnPM13 2013/10/12
% Satoru Hayasaka, Darren Gitelman, Camille Maumet
% Based on snpm_pp.m
%-Setup
%=======================================================================
fprintf('\nSnPM: snpm_combo_pp\n'),fprintf('%c','='*ones(1,72)),fprintf('\n')
MLver=version;MLver=MLver(1);
%-Initialise variables & constants
%-----------------------------------------------------------------------
tol = 1e-4; % Tolerance for comparing real numbers
% Two reals with abs(a-b)<tol are considered equal
% ( Reals have to be compared for equality when )
% ( computing adjusted p-values )
%-SetUp figure window
%-----------------------------------------------------------------------
Finter = spm_figure('FindWin','Interactive');
Fgraph = spm_figure('FindWin','Graphics');
if isempty(Fgraph), Fgraph=spm_figure('Create','Graphics'); end
spm_clf(Finter), spm_clf(Fgraph)
set(Finter,'Name','SnPM PostProcess');
%-Get Data
%=======================================================================
% Get analysis directory
if nargin==0
tmp = spm_select(1,'SnPM.mat','Select SnPM.mat for analysis...');
CWD = spm_str_manip(tmp,'hd');
end
load(fullfile(CWD,'SnPM'))
%-Load Config file & SnPM permutation data
if exist(fullfile(CWD,'SnPMcfg.mat'),'file')
load(fullfile(CWD,'SnPMcfg'))
else
fprintf('Error!! Cannot find SnPMcfg.mat file.\n');
fprintf('Make sure to run Setup and Compute in SnPM.\n');
fprintf('Check if\n %s \nis the right directory.\n',CWD);
fprintf('\nEnding the program .........\n\n');
return;
end
%-Ask whether positive or negative effects be analysed
%-----------------------------------------------------------------------
if STAT == 'T'
bNeg = job.Tsign==-1;
else
bNeg = 0;
end
%-Form full Tmax distribution
%-----------------------------------------------------------------------
%-Tmin are in second column of MaxT, stored with *+ve* values
if bhPerms
MaxT = [ MaxT; flipud(fliplr(MaxT)) ];
PiCond = [PiCond; -flipud(PiCond)];
end
%-Take MaxT for increases or decreases according to bNeg
MaxT = MaxT(:,bNeg+1);
nPerm = size(MaxT,1);
[StMaxT, iStMaxT] = sort(MaxT);
%-Load statistic image
%-----------------------------------------------------------------------
load(fullfile(CWD,'SnPMt'))
load(fullfile(CWD,'XYZ'))
%-Negate if looking at negative contrast
%-----------------------------------------------------------------------
if bNeg
SnPMt = -SnPMt;
CONT = -CONT;
end
%-Get ORIGIN, etc
DIM = [V(1).dim(1) V(1).dim(2) V(1).dim(3)];
VOX = [V(1).mat(1,1) V(1).mat(2,2) V(1).mat(3,3)];
MAT = V(1).mat;
IMAT = inv(MAT);
ORIGIN = IMAT(1:3,4);
% Template vol structure
Vs0 = V(1);
Vs0.dt = [spm_type('float64'), spm_platform('bigend')];
% Vs0 = struct('fname', '',...
% 'dim', [DIM,spm_type('float')],...
% 'mat', MAT,...
% 'pinfo', [1 0 0]',...
% 'descrip', '');
%-Write out filtered statistic image? (Get's done later)
%-----------------------------------------------------------------------
WrtFlt = isfield(job.WriteFiltImg, 'name'); %spm_input('Write filtered statistic img?','+1','y/n',[1,0],2);
if WrtFlt
%WrtFltFn = 'SnPMt_filtered';
%WrtFltFn=spm_input('Filename ?','+1','s',WrtFltFn);
% WrtFltFn = [WrtFltFn, '.img'];
WrtFltFn = job.WriteFiltImg.name;
end
%-Get inference parameters
%=======================================================================
%-Get corrected threshold
%-----------------------------------------------------------------------
alpha = job.Thr.Clus.ClusMass.PFilt; %spm_input('Corrected p value for filtering','+1','e',0.05);
%-Compute critical threshold for level alpha test
%-----------------------------------------------------------------------
if alpha < 1
c=ceil((1-alpha)*nPerm);
C_MaxT=StMaxT(c);
else
%-Just use voxels with +ve valued SnPMt
C_MaxT=0;
end
%-Ask whether SupraThreshold cluster size test required
%-----------------------------------------------------------------------
%-If chosen alpha specifies a critical threshold less than the threshold
% ST_Ut used to collect suprathreshold data in snpm_cp, then it makes
% no sense to analyse by spatial extent since the voxels are individually
% significant.
%-bST flags whether spatial extent information was collected.)
bSpatEx = bST & exist(fullfile(CWD,'SnPM_ST.mat'))==2;
if bSpatEx && (C_MaxT <= ST_Ut) && (alpha ~= 1)
str = 'Voxelwise corrected threshold = %g, which is smaller ';
str = [str 'than minimum saved suprathreshold information (%g)'];
str = [str '\nAll results significant voxelwise.'];
warning('SnPM:VoxelwiseCorrThreshSmaller', sprintf(str,C_MaxT,ST_Ut))
end
if bSpatEx~=1
error('SnPM:SupraStatMissing', 'Suprathreshold stats not collected! Cannot do cluster-combining!')
end
%-Get primary threshold for STC analysis if requested
%-----------------------------------------------------------------------
if bSpatEx
% Save original ST_Ut
ST_Ut_0 = ST_Ut;
%-Threshold must be greater or equal to that (ST_Ut) used to collect
% suprathreshold data in snpm_cp
%-If a test level alpha has been set, then it there's no sense in having
% the threshold greater than C_MaxT, above which voxels are individually
% significant
%tmp = 0;
primaryThresh = job.Thr.Clus.ClusMass.PrimThresh;
if bVarSm
%-If using pseudo-statistics then can't use (uncorrected)
% upper tail p-values to specify primary threshold
if alpha == 1 % Not filtering on significance
if ~(primaryThresh>=ST_Ut)
error('SnPM:PseudoStatWithPValueThreshold', ...
['Using pseudo-statistics you can''t use (uncorrected)'...
'upper tail p-values to specify primary threshold']);
end
else
if ~(primaryThresh>=ST_Ut && primaryThresh<C_MaxT)
error('SnPM:PseudoStatWithPValueThreshold', ...
['Using pseudo-statistics you can''t use (uncorrected)'...
'upper tail p-values to specify primary threshold']);
end
end
else
%-Statistic image is t with df degrees of freedom
pU_ST_Ut = 1-spm_Tcdf(ST_Ut,df);
if alpha==1 % Not filtering on significance
if ~( primaryThresh>=ST_Ut || (primaryThresh>0 && primaryThresh<=pU_ST_Ut_filt))
error('SnPM:InvalidPrimaryThresh', ['Primary threshold must be >=' num2str(ST_Ut) ...
' and >0 and <=' num2str(pU_ST_Ut_filt) ]);
end
else
pU_C_MaxT = 1-spm_Tcdf(C_MaxT,df);
if ~((primaryThresh>=ST_Ut && primaryThresh<C_MaxT) || ...
(primaryThresh>pU_C_MaxT && primaryThresh<=pU_ST_Ut_filt))
error('SnPM:InvalidPrimaryThresh', ['Primary threshold must be >=' num2str(ST_Ut) ...
' and <' num2str(C_MaxT) ' or >' num2str(pU_C_MaxT) ...
' and <= ' num2str(pU_ST_Ut_filt)]);
end
clear pU_C_MaxT
end
clear pU_ST_Ut
if (primaryThresh < 1)
primaryThresh = spm_invTcdf(1-primaryThresh,df);
end
end
ST_Ut = primaryThresh;
%
% Getting combined test parameters
%
Theta = job.Thr.Clus.ClusMass.Theta;
if (Theta<0+tol || Theta>1-tol)
error('SnPM:InvalidTheta', 'Theta should be between 0 and 1');
end
mTheta = Theta/(1-Theta); %-Weight for mass combining
%-Picking which combining test
% Only mass combining for now
iW = 3;% = spm_input('Choose combining function',1,'b', ...
% 'Fisher|Tippet|Mass|All',[1:4],1);
end
%-Show permutation distributions?
%-----------------------------------------------------------------------
%ShwDst = spm_input('Display permutation distribution[s]?','+1','y/n',[1,0],1);
ShwDst = 1;
%=======================================================================
%- C O M P U T A T I O N
%=======================================================================
set(Finter,'Pointer','Watch')
%-Calculate distribution of Maximum Suprathreshold Cluster size
%-Calculate critical Suprathreshold Cluster Size
%=======================================================================
if bSpatEx
fprintf('Working on spatial extent...\n');
%-Compute suprathreshold voxels - check there are some
%---------------------------------------------------------------
fprintf('\tComputing suprathreshold voxels...');
Q = find(SnPMt > ST_Ut);
SnPMt = SnPMt(Q);
XYZ = XYZ(:,Q);
if isempty(Q)
set(Finter,'Pointer','Arrow')
figure(Fgraph)
axis off
text(0,0.97,CWD,'Fontsize',16,'FontWeight','Bold');
text(0,0.93,sprintf('No voxels above threshold %4.2f',ST_Ut));
ShowDist(MaxT,C_MaxT);
return
end
fprintf('done\n')
%-Load & condition statistics
%---------------------------------------------------------------
fprintf('\tLoading & conditioning SupraThreshold statistics...');
load(fullfile(CWD,'SnPM_ST'))
%-SnPM_ST stores columns of [x;y;z;abs(t);perm] with perm negative
% where the exceedence was t < -ST_Ut_0
%-Trim statistics according to threshold ST_Ut, if ST_Ut > ST_Ut_0
tmp = find(SnPM_ST(4,:)>ST_Ut);
SnPM_ST = SnPM_ST(:,tmp);
clear tmp;
%-Negate perm numbers if looking at negative contrast
if bNeg
SnPM_ST(5,:) = -SnPM_ST(5,:);
end
if bhPerms
%-Renumber negative perms according to -flipud PiCond
tQ = SnPM_ST(5,:)<0;
SnPM_ST(5,tQ) = nPerm +1 +SnPM_ST(5,tQ);
else
%-Not bhPerms: Lose entries for negative excursions
SnPM_ST = SnPM_ST(:,SnPM_ST(5,:)>0);
end
fprintf('done\n')
%-Calculate distribution of Maximum SupraThreshold Cluster size
%---------------------------------------------------------------
% ClInfo = [x;y;z;ClusterPeak;ClusterSize;ClusterMass;ClusterInd;Perm]
ClInfo = [];
fprintf('\tComputing dist. of max SupraThreshold cluster size: ');
MaxSTCS = zeros(nPerm,1);
SetLvl = zeros(nPerm,1);
fprintf('\nPerms left: ');
% preallocate ClInfo to improve speed. This will be far larger than it
% needs to be but it should be OK.
ClInfo = zeros(8,size(SnPM_ST,2));
ClInfoEnd = 0;
for i = nPerm:-1:1
if (rem(i,10)==0)
fprintf('\b\b\b\b%-4u',i)
drawnow
end
tQ = (SnPM_ST(5,:)==i);
if any(tQ)
%-Filter out data for this perm
subSnPM_ST = SnPM_ST(:,tQ);
%-Compute cluster labellings for this perm
%===== SnPM99 change =================
Locs_mm = SnPM_ST(1:3,tQ);
Locs_mm (4,:) = 1;
Locs_vox = IMAT * Locs_mm;
%===== SnPM99 change =================
tmp = spm_clusters(Locs_vox(1:3,:));
%-Work out maximum cluster size (honest!)
SetLvl(i) = max(tmp);
tmpCS = zeros(1,SetLvl(i));
tmpCS = diff(find([diff([0,sort(tmp)]),1]));
MaxSTCS(i) = max(tmpCS);
for j=1:SetLvl(i)
%-Recording peak, its location, and excess mass
% then creates a big vector ClInfo with
% all cluster info
tmpCLoc = (tmp==j);
subsubST = subSnPM_ST(:,tmpCLoc);
[tmpPeak, tmpPLoc] = max(subsubST(4,:));
tmpXYZ = subsubST(1:3,tmpPLoc);
tmpMass = sum((subsubST(4,:)-ST_Ut).^mTheta);
tmpVec = [tmpXYZ; tmpPeak; tmpCS(j); tmpMass; j; i];
ClInfo(:,ClInfoEnd+j) = tmpVec;
end
ClInfoEnd = ClInfoEnd+SetLvl(i);
end
end
% get rid of any unused entries in ClInfo
ClInfo = ClInfo(:,1:ClInfoEnd);
clear tmpCS tmpCLoc tmpPeak tmpPLoc tmpXYZ tmpMass tmpVec;
fprintf('\b\b\b\bdone\n');
%-Save perm 1 stats for use later - [X;Y;Z;T;perm;STCno]
STCstats = [ SnPM_ST(:,tQ); tmp];
%-Compute critical SupraThreshold Cluster size
[StMaxSTCS, iStMaxSTCS] = sort(MaxSTCS);
if alpha < 1
C_STCS = StMaxSTCS(c);
else
C_STCS = 0;
end
%-Check XYZ for points > ST_Ut in perm 1 matches
% XYZ computed above for SnPMt > ST_Ut
if ~all(all( SnPM_ST(1:3,SnPM_ST(5,:)==1) == XYZ ))
error('SnPM:InvalidSTXYZ', 'ST XYZ don''t match between STCS & thresh')
end
%-- VOXEL CLUSTER COMBINED TEST STATISTICS ----
%-- Assigning each voxel corrected voxel and cluster p-values
% then calculate the combining functions
% CorrPs = [Vox p; Cl p; Fisher p; Tippet p; ExcessMass p; Meta p]
% ComboF = [Fisher Wf; Tippet Wt; Excess mass Wm; Meta Wa]
CorrPs = ones(6,size(ClInfo,2));
ComboF = zeros(4,size(ClInfo,2));
fprintf('Calculating corr p-values for each voxel / cluster\n');
for ip = 1:(nPerm-1)
if rem(ip,50)==0, fprintf('.'), end
Qvox = find(ClInfo(4,:)>StMaxT(ip));
CorrPs(1,Qvox) = (nPerm-ip)/nPerm;
Qcl = find(ClInfo(5,:)>StMaxSTCS(ip));
CorrPs(2,Qcl) = (nPerm-ip)/nPerm;
end
fprintf('.Done!\n');
fprintf('Calculating voxel-cluster combining functions\n');
ComboF(1,:) = -2*(2*Theta*log(CorrPs(1,:)) + ...
2*(1-Theta)*log(CorrPs(2,:)));
ComboF(2,:) = 1 - min(2*Theta*log(CorrPs(1,:)), ...
2*(1-Theta)*log(CorrPs(2,:)));
ComboF(3,:) = ClInfo(6,:);
fprintf('.Done!\n');
%-- Corrected p-value for combo function
MaxWf = zeros(nPerm,1);
MaxWt = zeros(nPerm,1);
MaxWm = zeros(nPerm,1);
for i=1:nPerm
QPerm = find(ClInfo(8,:) == i);
if ~isempty(QPerm)
tmpWf = ComboF(1,QPerm);
MaxWf(i) = max(tmpWf);
tmpWt = ComboF(2,QPerm);
MaxWt(i) = max(tmpWt);
tmpWm = ComboF(3,QPerm);
MaxWm(i) = max(tmpWm);
end
end
[StMaxWf, iStMaxWf] = sort(MaxWf);
[StMaxWt, iStMaxWt] = sort(MaxWt);
[StMaxWm, iStMaxWm] = sort(MaxWm);
C_Wcomb = zeros(4,1);
if alpha < 1
C_Wcomb(1) = StMaxWf(c);
C_Wcomb(2) = StMaxWt(c);
C_Wcomb(3) = StMaxWm(c);
else
C_Wcomb(1) = 0;
C_Wcomb(2) = 0;
C_Wcomb(3) = 0;
end
fprintf('Calculating corr p-values for combining functions\n');
for ip = 1:(nPerm-1)
if rem(ip,50)==0, fprintf('.'), end
Qcomb = find(ComboF(1,:)>StMaxWf(ip));
CorrPs(3,Qcomb) = (nPerm-ip)/nPerm;
Qcomb = find(ComboF(2,:)>StMaxWt(ip));
CorrPs(4,Qcomb) = (nPerm-ip)/nPerm;
Qcomb = find(ComboF(3,:)>StMaxWm(ip));
CorrPs(5,Qcomb) = (nPerm-ip)/nPerm;
end
fprintf('.Done!\n');
%
% Doing Meta-combining
%
%-First, calculate the meta statistic
fprintf('Calculating meta-combining function\n');
ComboF(4,:) = 1 - min([log(CorrPs(3,:))' ...
log(CorrPs(4,:))' log(CorrPs(5,:))'],[],2)';
% Then calculate the max meta-combining function
MaxWa = zeros(nPerm,1);
for ip=1:nPerm
QPerm = find(ClInfo(8,:) == ip);
if ~isempty(QPerm)
tmpWa = ComboF(4,QPerm);
MaxWa(ip) = max(tmpWa);
end
end
% Corrected critical meta-statistic
[StMaxWa, iStMaxWa] = sort(MaxWa);
if alpha < 1
C_Wcomb(4) = StMaxWa(c);
else
C_Wcomb(4) = 0;
end
% P-value calculation for meta-combining
fprintf('Calculating corr p-values for meta-combining \n');
for ip = 1:(nPerm-1)
if rem(ip,50)==0, fprintf('.'), end
Qcomb = find(ComboF(4,:)>StMaxWa(ip));
CorrPs(6,Qcomb) = (nPerm-ip)/nPerm;
end
fprintf('.Done!\n');
% Combining all the MaxW distributions to be plotted later
MaxW = [MaxWf; MaxWt; MaxWm; MaxWa];
end
%-Save some time consuming results
%-----------------------------------------------------------------------
if bSpatEx, save SnPM_pp.mat STCstats MaxSTCS SetLvl, end
if bSpatEx, save SnPM_combo.mat CorrPs ComboF ClInfo MaxWf MaxWt MaxWm MaxWa, end
%-Filter data at specified corrected p-value alpha
%=======================================================================
if bSpatEx
%-Analysing spatial extent
%-NB:alpha==1 implies C_MaxT==C_STCS==0.
% Since ST_Ut>0 filtering has no effect if alpha==1, so skip it.
if alpha<1
%-Filter on significance of cluster size
%---------------------------------------------------------------
fprintf('Filtering on cor.sig. at suprathreshold cluster level...');
nSTC = max(STCstats(6,:));
STCS = diff(find([diff([0,sort(STCstats(6,:))]),1]));
Q = [];
for i = 1:nSTC
tQ = find(STCstats(6,:)==i);
ttQ= find(ClInfo(7,:)==i & ClInfo(8,:)==1);
if ( STCS(i) > C_STCS || max(STCstats(4,tQ)) > C_MaxT || ...
max(ComboF(iW,ttQ)) > C_Wcomb(iW))
Q = [Q tQ];
end
end
if ~isempty(Q)
SnPMt = SnPMt(Q);
XYZ = XYZ(:,Q);
STCstats = STCstats(:,Q);
end
fprintf('done\n')
end
else
%-Truncate at critical threshold for level alpha test
% NB if alpha==1 then C_MaxT is set to 0, and filter on +ve SnPMt
fprintf('Filtering on cor.sig. at voxel level...');
Q = find(SnPMt > C_MaxT);
if length(Q)
SnPMt = SnPMt(Q);
XYZ = XYZ(:,Q);
end
fprintf('done\n')
end
%-Return if there are no voxels
%-----------------------------------------------------------------------
if isempty(Q)
set(Finter,'Pointer','Arrow')
figure(Fgraph)
axis off
text(0,0.97,CWD,'Fontsize',16,'FontWeight','Bold');
tmp='voxels'; if bSpatEx, tmp='suprathreshold clusters'; end
text(0,0.93,sprintf(...
'No %s significant at alpha=%6.4f (corrected)',tmp,alpha));
if bSpatEx
ShowDist(MaxT,C_MaxT,MaxSTCS,C_STCS);
else
ShowDist(MaxT,C_MaxT);
end
return
end
%-Characterize local excursions in terms of maxima:
% #voxels STC_N; MaxTs STC_SnPMt; locations STC_XYZ, & region# STC_r
%-----------------------------------------------------------------------
%===== SnPM99 change =============================================
TempXYZmm = XYZ;
TempXYZmm(4,:) = 1;
TempXYZvoxel = IMAT*TempXYZmm;
TempXYZvoxel= TempXYZvoxel(1:3,:);
[STC_N, STC_SnPMt, STC_XYZ, STC_r] = spm_max(SnPMt,TempXYZvoxel);
TempXYZvoxel = STC_XYZ;
TempXYZvoxel(4,:) = 1;
TempXYZmm = MAT * TempXYZvoxel;
STC_XYZ = TempXYZmm(1:3,:);
%===== SnPM99 change =============================================
%-Compute adjusted significances for local maxima, & regions (if required)
%-----------------------------------------------------------------------
Pt = ones(size(STC_r));
for i = 1:length(STC_r)
%-Use a > b -tol rather than a >= b to avoid comparing reals
Pt(i) = sum(MaxT > STC_SnPMt(i) -tol) / nPerm;
end
%if ~bVarSm
% Pu = 1 - spm_Tcdf(STC_SnPMt,df);
% end
if bSpatEx
%-Compute single step adjusted p-values for region size: pSTSC_SS
Pn = ones(1,length(STC_r));
Ww = ones(4,length(STC_r));
Pw = ones(4,length(STC_r));
for i = 1:length(STC_r)
Pn(i) = sum(MaxSTCS>=STC_N(i)) / nPerm;
Qvox = find((ClInfo(1,:)==STC_XYZ(1,i)) & ...
(ClInfo(2,:)==STC_XYZ(2,i)) & ...
(ClInfo(3,:)==STC_XYZ(3,i)) & ...
(ClInfo(8,:)==1));
if ~isempty(Qvox)
Ww(:,i) = ComboF(:,Qvox);
Pw(:,i) = CorrPs(3:6,Qvox);
end
end
save('SnPM_combo','Ww','Pw','STC_XYZ','-append');
end
%=======================================================================
%-D I S P L A Y
%=======================================================================
figure(Fgraph)
if (ShwDst)
axis off
if (bSpatEx)
text(0,0.97,'Permutation Distribution','Fontsize',16,'FontWeight','Bold');
ShowDist(MaxT,C_MaxT,MaxSTCS,C_STCS);
else
text(0,0.97,'Permutation Distributions','Fontsize',16,'FontWeight','Bold');
ShowDist(MaxT,C_MaxT);
end
end
% Change the style of pressing ' return' to clicking on a new button.
%spm_print
%disp('Press <RETURN> to continue'); pause
if false
if spm_input('Review permutation distributions.',1,'bd',...
'Print & Continue|Continue',[1,0],1)
spm_print
end
end
spm_clf(Fgraph)
%-Maximium intenisty projection of SPM{Z}
%=======================================================================
hmip = axes('Position',[0.05 0.5 0.5 0.5]);
snpm_mip(SnPMt,XYZ,MAT,DIM); axis image
if bVarSm
title('SnPM{Pseudo-t}','FontSize',16,'Fontweight','Bold')
else
title('SnPM{t}','FontSize',16,'Fontweight','Bold')
end
%-Design matrix and contrast
%=======================================================================
hDesMtx = axes('Position',[0.65 0.6 0.2 0.2]);
imagesc((spm_DesMtx('Sca', [H,C,B,G],HCBGnames) + 1)*32)
xlabel 'Design Matrix'
set(hDesMtx,'XTick',[],'XTickLabel','')
hConAxes = axes('Position',[0.65 0.8 0.2 0.1]);
h = bar(CONT(1,:), 'FaceColor',[1 1 1]*.8, 'BarWidth', 1);
hold on
tX = get(h,'XData'); tY = get(h,'YData');
bar_width = get(h, 'BarWidth');
set(gca,'Xlim',[min(tX(:))-bar_width/2 max(tX(:))+bar_width/2])
title 'contrast'; axis off; hold off
%-Table of regional effects
%=======================================================================
%-Table headings
%-----------------------------------------------------------------------
hTable = axes('Position',[0.1 0.1 0.8 0.46],...
'YLim',[0,27],'YLimMode','manual',...
'DefaultTextInterpreter','Tex',...
'DefaultTextVerticalAlignment','Baseline',...
'Visible','off');
% 'DefaultHorizontalAlignment','right',...
y = 26;
dy=1;
text(0,y,['P values & statistics: ',spm_str_manip(CWD,'a40')],...
'FontSize',12,'FontWeight','Bold','Interpreter','none');
y = y -dy;
line([0 1],[y y],'LineWidth',3,'Color','r')
y = y -dy;
tCol = [ 0.00 0.16 ... %-Cluster
0.25 0.43 ... %-combo cluster
0.55 0.71 ... %-Voxel
0.86 0.93 1.00]; %-XYZ
PF = spm_platform('fonts'); %-Font names (for this platform)
%-Construct table header
%-----------------------------------------------------------------------
set(gca,'DefaultTextFontName',PF.helvetica,'DefaultTextFontSize',10)
Hp = [];
h = text(0.10,y, 'cluster-level','FontSize',10,'HorizontalAlignment','Center' );
h = line([tCol(1),0.20],[1,1]*(y-dy/4),'LineWidth',0.5,'Color','r');
h = text(tCol(1),y-9*dy/8, '\itp_{corrected}'); Hp = [Hp,h];
h = text(tCol(2),y-9*dy/8, '\itk ');
h = text(0.37,y, 'combo cluster-level','FontSize',10, 'HorizontalAlignment','Center'); Hp=[Hp,h];
h = line([tCol(3),0.50],[1,1]*(y-dy/4),'LineWidth',0.5,'Color','r'); Hp=[Hp,h];
h = text(tCol(3),y-9*dy/8, '\itp_{corrected}'); Hp = [Hp,h];
h = text(tCol(4),y-9*dy/8, '\itw '); Hp=[Hp,h];
text(0.67,y, 'voxel-level','FontSize',10, 'HorizontalAlignment','Center');
line([tCol(5),0.80],[1,1]*(y-dy/4),'LineWidth',0.5,'Color','r');
h = text(tCol(5),y-9*dy/8, '\itp_{FWE-corr}');
if ~bVarSm
h = text(tCol(6),y-9*dy/8, '\itt');
else
h = text(tCol(6)-0.02,y-9*dy/8, 'Pseudo-t');
end
text(tCol(7),y-dy/2,'{x,y,z} mm','FontSize',10);
y = y - 7*dy/4;
line([0 1],[y y],'LineWidth',1,'Color','r')
y = y - 5*dy/4;
% text(0.00,y,'region','FontSize',10);
%text(0.00,y,'size {k}','FontSize',10);
%if bSpatEx
% text(0.11,y,'P(K_{max}>= k)','FontSize',10);
% text(0.62,y,'w','FontSize',10);
% text(0.68,y,'P(W_{max}>= w)','FontSize',10);
%
%end
%
%text(0.35,y,'P(T_{max}>= u)','FontSize',10);
%
%text(0.84,y,'{x,y,z} mm','FontSize',10);
%y = y -0.8;
%line([0 1],[y y],'LineWidth',3,'Color',[0 0 0])
%y = y -1;
Fmtst = { '%0.4f','%0.0f', ... %-cluster
'%0.4f','%6.2f', ... %-combo cluster
'%0.4f','%6.2f', ... %-voxel
'%3.0f','%3.0f', '%3.0f'}; %-XYZ
%-Column Locations
%-----------------------------------------------------------------------
%tCol = [ 0.08 0.18 0.33 ...
% 0.44 0.66 0.76 ...
% 0.86 0.93 1.00]; %-XYZ
%-List of maxima
%-----------------------------------------------------------------------
r = 1;
bUsed = zeros(size(STC_SnPMt));
while max(STC_SnPMt.*(~bUsed)) && (y > 3)
[null, i] = max(STC_SnPMt.*(~bUsed)); % Largest t value
j = find(STC_r == STC_r(i)); % Maxima in same region
%-Print region and largest maximum
%-------------------------------------------------------------------
StrAttr = {'Fontsize',10,'ButtonDownFcn','get(gcbo, ''UserData'')',...
'HorizontalAlignment','right'};
StrAttrB = {StrAttr{:},'FontWeight','Bold'};
% text(0.00,y,sprintf('%0.0f',r),'UserData',r,StrAttrB{:})
if bSpatEx
text(tCol(1)+0.09,y,sprintf(Fmtst{1},Pn(i)),...
'UserData',Pn(i),StrAttrB{:})
text(tCol(3)+0.08,y,sprintf(Fmtst{3},Pw(iW,i)),...
'UserData',Pw(iW,i),StrAttrB{:})
text(tCol(4)+0.04,y,sprintf(Fmtst{4},Ww(iW,i)),...
'UserData',Ww(iW,i),StrAttrB{:})
else
set(Hp, 'Visible','off')
end
text(tCol(2)+0.03,y,sprintf(Fmtst{2},STC_N(i)),'UserData',STC_N(i),StrAttrB{:})
text(tCol(5)+0.08,y,sprintf(Fmtst{5},Pt(i)),...
'UserData',Pt(i),StrAttrB{:})
text(tCol(6)+0.04,y,sprintf(Fmtst{6},STC_SnPMt(i)),...
'UserData',STC_SnPMt(i),StrAttrB{:})
text(tCol(7),y,sprintf(Fmtst{7},STC_XYZ(1,i)),...
'UserData',STC_XYZ(:,i),StrAttrB{:})
text(tCol(8),y,sprintf(Fmtst{8},STC_XYZ(2,i)),...
'UserData',STC_XYZ(:,i),StrAttrB{:})
text(tCol(9),y,sprintf(Fmtst{9},STC_XYZ(3,i)),...
'UserData',STC_XYZ(:,i),StrAttrB{:})
y = y -1;
%-Print up to 3 secondary maxima (>8mm apart)
%-------------------------------------------------------------------
[null, k] = sort(-STC_SnPMt(j)); % Sort on t value
D = i;
for i = 1:length(k)
d = j(k(i));
if min( sqrt( sum((STC_XYZ(:,D) - ...
STC_XYZ(:,d)*ones(1,size(D,2))).^2) ) ) > 8
if length(D) < 3
text(tCol(5)+0.08,y,sprintf(Fmtst{5},Pt(d)),...
'UserData',Pt(d),StrAttr{:})
text(tCol(6)+0.04,y,sprintf(Fmtst{6},STC_SnPMt(d)),...
'UserData',STC_SnPMt(d),StrAttr{:})
text(tCol(7),y,sprintf(Fmtst{7},STC_XYZ(1,d)),...
'UserData',STC_XYZ(:,d),StrAttr{:})
text(tCol(8),y,sprintf(Fmtst{8},STC_XYZ(2,d)),...
'UserData',STC_XYZ(:,d),StrAttr{:})
text(tCol(9),y,sprintf(Fmtst{9},STC_XYZ(3,d)),...
'UserData',STC_XYZ(:,d),StrAttr{:})
D = [D d];
y = y -1;
end
end
end
bUsed(j) = (bUsed(j) | 1 ); %-Mark maxima as "used"
r = r + 1; % Next region
end
clear i j k D d r
%-Footnote with SnPM parameters
%=======================================================================
line([0,1],[0.5,0.5],'LineWidth',1,'Color','r')
y = 0;
if bSpatEx
tmp = sprintf('Threshold = %7.4f',ST_Ut);
if ~bVarSm
tmp=[tmp,sprintf(' (p = %6.4f)',spm_Tcdf(-ST_Ut,df))];
end
text(0,y,tmp,'FontSize',8)
text(0.7,y,sprintf('Critical STCS = %d voxels',C_STCS),'FontSize',8)
y = y -0.8;
end
text(0,y,sprintf('alpha = %6.4f, df = %d',alpha,df),'FontSize',8)
text(0.7,y,sprintf('Critical threshold = %7.4f',C_MaxT),'FontSize',8)
y = y -0.8;
text(0,y,sprintf('Volume = %d %5.2fx%5.2fx%5.2f mm voxels',...
S,VOX(1),VOX(2),VOX(3)),'FontSize',8);
y = y -0.8;
text(0,y,sprintf('Design: %s',sDesign),'FontSize',8);
y = y -0.8;
text(0,y,sprintf('Perms: %s',sPiCond),'FontSize',8);
if bVarSm
y = y -0.8;
text(0,y,sVarSm,'FontSize',8)
end
y = -1.6;
NameW = {'Fisher','Tippet','Excess mass','Meta-combining'};
if bSpatEx
text(0.7,y,sprintf('Combining function W: %s',NameW{iW}),'FontSize',8);
y = y - 0.8;
text(0.7,y,sprintf('Critical W = %7.4f',C_Wcomb(iW)),'FontSize',8);
y = y - 0.8;
text(0.7,y,sprintf('Theta = %4.2f',Theta),'FontSize',8);
end
%spm_print
%Set a button, so the user can decide whether to print the page of results to spm2.ps.
if false % interactive display inactive
if spm_input('Review results.',1,'bd','Print|Done',[1,0],1)
spm_print
end
end
set(Finter,'Pointer','Arrow')
%- Image output?
%=======================================================================
%-Write out filtered SnPMt?
if WrtFlt
Fname = WrtFltFn;
%-Dont ask about t2z conversion
%---------------------------------------------------------------
bt2z = 0;
if ~bVarSm
% bt2z = spm_input('Convert t -> z prior to writing?',...
% '+1','y/n')=='y';
tmp = sprintf('SPMt - %d df',df);
else
tmp = 'SnPMt - pseudo t';
end
%-Reconstruct filtered image from XYZ & SnPMt
%---------------------------------------------------------------
t = zeros(1,prod(DIM));
if ~bt2z
t(spm_xyz2e(XYZ,V)) = SnPMt;
else
t(spm_xyz2e(XYZ,V)) = spm_t2z(SnPMt,df);
tmp = [tmp,' (Gaussianised)'];
end
if ~bSpatEx
tmp=sprintf('%s p<%10g corrected @ voxel level',tmp,alpha);
elseif bt2z
tmp=sprintf('%s p<%10g corrected @ cluster level, u=%4.2',...
tmp,alpha,spm_t2z(ST_Ut,df));
else
tmp=sprintf('%s p<%10g corrected @ cluster level, u=%4.2',...
tmp,alpha,ST_Ut,df);
end
%-Write out to analyze file
%---------------------------------------------------------------
% Vs = Vs0;
% Vs.fname = Fname; Vs.descrip = tmp;
% Vs.dim = Vs.dim(1:3);
% Vs = sf_create_vol(Vs);
% t = reshape(t,DIM);
% for p=1:Vs.dim(3)
% Vs = spm_write_plane(Vs,t(:,:,p),p);
% end
% Vs = sf_close_vol(Vs);
% clear t
%-Write out to image file
%---------------------------------------------------------------
Vs = snpm_clone_vol(Vs0, Fname, tmp);
Vs = spm_create_vol(Vs);
t = reshape(t,DIM);
for p=1:Vs.dim(3)
Vs = spm_write_plane(Vs,t(:,:,p),p);
end
Vs = sf_close_vol(Vs);
clear t
end
%-Reset Interactive Window
%-----------------------------------------------------------------------
spm_figure('Clear','Interactive')
function ShowDist(T,cT,C,cC)
%
% Display permutation distributions on current figure, using position
% pos.
%
% We assume that the observed (aka correctly labeled data) are the first
% element in the distribution.
%
pos1 = [0.125 0.50 0.75 0.3];
pos2 = [0.125 0.08 0.75 0.3];
%
% Display intensity perm dist
%
% Bin width rule from Scott, "Multivariate Density Estimation", 1992, pg 55.
%
axes('position',pos1)
BinWd = 3.5*std(T)*length(T)^(-1/3);
nBin = floor((max(T)-min(T))/BinWd)+1;
nBin = min(max(nBin,10),50);
hist(T,nBin);
h = findobj(gca,'Type','patch');
set(h,'FaceColor',[.5 .5 .5]);
title('Permutation Distribution: Maximum Statistic','FontSize',14)
Ylim = get(gca,'ylim'); Xlim = get(gca,'xlim');
line(T(1)*[1 1],Ylim.*[1 0.95],'LineStyle',':');
text(T(1)+diff(Xlim)*0.01,Ylim(2)*0.95,'Observed','FontSize',10)
line(cT*[1 1],Ylim.*[1 0.85],'LineStyle','-');
text(cT+diff(Xlim)*0.01,Ylim(2)*0.85,'Threshold','FontSize',10);
if (nargin>2)
%
% Display cluster size perm dist
%
axes('position',pos2)
BinWd = 3.5*std(C)*length(C)^(-1/3);
nBin = floor((max(C)-min(C))/BinWd)+1;
nBin = min(max(nBin,10),50);
hist(C,nBin);