-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathunity_environment.py
278 lines (224 loc) · 9.18 KB
/
unity_environment.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
from .base_environment import BaseEnvironment
import sys
import os
# sys.path.append('../../vh_mdp/')
curr_dir = os.path.dirname(os.path.realpath(__file__))
sys.path.append(f'{curr_dir}/../')
from unity_simulator import comm_unity as comm_unity
from . import utils as utils_environment
from evolving_graph import utils
import atexit
import random
import pdb
import ipdb
import random
import json
import numpy as np
class UnityEnvironment(BaseEnvironment):
def __init__(self,
num_agents=2,
max_episode_length=200,
observation_types=None,
use_editor=False,
base_port=8080,
port_id=0,
executable_args={},
recording_options={'recording': False,
'output_folder': None,
'file_name_prefix': None,
'cameras': 'PERSON_FROM_BACK',
'modality': 'normal'},
seed=123):
self.seed = seed
self.prev_reward = 0.
self.rnd = random.Random(seed)
np.random.seed(seed)
self.steps = 0
self.env_id = None
self.max_ids = {}
self.num_agents = num_agents
self.max_episode_length = max_episode_length
self.actions_available = [
'turnleft',
'walkforward',
'turnright',
'walktowards',
'open',
'close',
'put',
'grab',
'no_action'
]
self.recording_options = recording_options
self.base_port = base_port
self.port_id = port_id
self.executable_args = executable_args
# Observation parameters
self.num_camera_per_agent = 6
self.CAMERA_NUM = 1 # 0 TOP, 1 FRONT, 2 LEFT..
self.default_image_width = 300
self.default_image_height = 300
if observation_types is not None:
self.observation_types = observation_types
else:
self.observation_types = ['partial' for _ in range(num_agents)]
self.agent_info = {
0: 'Chars/Female1',
1: 'Chars/Male1'
}
self.changed_graph = True
self.rooms = None
self.id2node = None
self.num_static_cameras = None
if use_editor:
# Use Unity Editor
self.port_number = 8080
self.comm = comm_unity.UnityCommunication()
else:
# Launch the executable
self.port_number = self.base_port + port_id
# ipdb.set_trace()
self.comm = comm_unity.UnityCommunication(port=str(self.port_number), **self.executable_args)
atexit.register(self.close)
self.reset()
def close(self):
self.comm.close()
def relaunch(self):
self.comm.close()
self.comm = comm_unity.UnityCommunication(port=str(self.port_number), **self.executable_args)
def reward(self):
# Define here your reward
reward = 0
done = False
info = {}
return reward, done, info
def step(self, action_dict):
script_list = utils_environment.convert_action(action_dict)
if len(script_list[0]) > 0:
if self.recording_options['recording']:
success, message = self.comm.render_script(script_list,
recording=True,
gen_vid=False,
skip_animation=False,
camera_mode=self.recording_options['cameras'],
file_name_prefix='task_{}'.format(self.task_id),
image_synthesis=self.recording_optios['modality'])
else:
success, message = self.comm.render_script(script_list,
recording=False,
gen_vid=False,
skip_animation=True)
if not success:
print(message)
else:
self.changed_graph = True
# Obtain reward
reward, done, info = self.reward()
graph = self.get_graph()
self.steps += 1
obs = self.get_observations()
info['finished'] = done
info['graph'] = graph
if self.steps == self.max_episode_length:
done = True
return obs, reward, done, info
def reset(self, environment_graph=None, environment_id=None, init_rooms=None):
"""
:param environment_graph: the initial graph we should reset the environment with
:param environment_id: which id to start
:param init_rooms: where to intialize the agents
"""
self.env_id = environment_id
print("Resetting env", self.env_id)
if self.env_id is not None:
self.comm.reset(self.env_id)
else:
self.comm.reset()
s,g = self.comm.environment_graph()
if self.env_id not in self.max_ids.keys():
max_id = max([node['id'] for node in g['nodes']])
self.max_ids[self.env_id] = max_id
max_id = self.max_ids[self.env_id]
#print(max_id)
if environment_graph is not None:
# TODO: this should be modified to extend well
# updated_graph = utils.separate_new_ids_graph(environment_graph, max_id)
updated_graph = environment_graph
success, m = self.comm.expand_scene(updated_graph)
else:
success = True
if not success:
print("Error expanding scene")
pdb.set_trace()
return None
self.num_static_cameras = self.comm.camera_count()[1]
if init_rooms is None or init_rooms[0] not in ['kitchen', 'bedroom', 'livingroom', 'bathroom']:
rooms = self.rnd.sample(['kitchen', 'bedroom', 'livingroom', 'bathroom'], 2)
else:
rooms = list(init_rooms)
for i in range(self.num_agents):
if i in self.agent_info:
self.comm.add_character(self.agent_info[i], initial_room=rooms[i])
else:
self.comm.add_character()
_, self.init_unity_graph = self.comm.environment_graph()
self.changed_graph = True
graph = self.get_graph()
self.rooms = [(node['class_name'], node['id']) for node in graph['nodes'] if node['category'] == 'Rooms']
self.id2node = {node['id']: node for node in graph['nodes']}
obs = self.get_observations()
self.steps = 0
self.prev_reward = 0.
return obs
def get_graph(self):
if self.changed_graph:
s, graph = self.comm.environment_graph()
if not s:
pdb.set_trace()
self.graph = graph
self.changed_graph = False
return self.graph
def get_observations(self):
dict_observations = {}
for agent_id in range(self.num_agents):
obs_type = self.observation_types[agent_id]
dict_observations[agent_id] = self.get_observation(agent_id, obs_type)
return dict_observations
def get_action_space(self):
dict_action_space = {}
for agent_id in range(self.num_agents):
if self.observation_types[agent_id] not in ['partial', 'full']:
raise NotImplementedError
else:
# Even if you can see all the graph, you can only interact with visible objects
obs_type = 'partial'
visible_graph = self.get_observation(agent_id, obs_type)
dict_action_space[agent_id] = [node['id'] for node in visible_graph['nodes']]
return dict_action_space
def get_observation(self, agent_id, obs_type, info={}):
if obs_type == 'partial':
# agent 0 has id (0 + 1)
curr_graph = self.get_graph()
return utils.get_visible_nodes(curr_graph, agent_id=(agent_id+1))
elif obs_type == 'full':
return self.get_graph()
elif obs_type == 'visible':
# Only objects in the field of view of the agent
raise NotImplementedError
elif obs_type == 'image':
camera_ids = [self.num_static_cameras + agent_id * self.num_camera_per_agent + self.CAMERA_NUM]
if 'image_width' in info:
image_width = info['image_width']
image_height = info['image_height']
else:
image_width, image_height = self.default_image_width, self.default_image_height
if 'mode' in info:
current_mode = info['mode']
else:
current_mode = 'normal'
s, images = self.comm.camera_image(camera_ids, mode=current_mode, image_width=image_width, image_height=image_height)
if not s:
pdb.set_trace()
return images[0]
else:
raise NotImplementedError