|
20 | 20 | "from gluonts.evaluation.backtest import make_evaluation_predictions\n",
|
21 | 21 | "from gluonts.evaluation import MultivariateEvaluator\n",
|
22 | 22 | "\n",
|
23 |
| - "#from pts.modules import StudentTOutput\n", |
| 23 | + "# from pts.modules import StudentTOutput\n", |
24 | 24 | "\n",
|
25 | 25 | "from ConvTSMixer import ConvTSMixerEstimator\n",
|
26 | 26 | "import random\n",
|
|
38 | 38 | },
|
39 | 39 | "outputs": [],
|
40 | 40 | "source": [
|
41 |
| - "class ConvTSMixerObjective: \n", |
42 |
| - " def __init__(self, dataset, train_grouper, test_grouper, metric_type=\"m_sum_mean_wQuantileLoss\"):\n", |
| 41 | + "class ConvTSMixerObjective:\n", |
| 42 | + " def __init__(\n", |
| 43 | + " self,\n", |
| 44 | + " dataset,\n", |
| 45 | + " train_grouper,\n", |
| 46 | + " test_grouper,\n", |
| 47 | + " metric_type=\"m_sum_mean_wQuantileLoss\",\n", |
| 48 | + " ):\n", |
43 | 49 | " self.metric_type = metric_type\n",
|
44 | 50 | " self.dataset = dataset\n",
|
45 | 51 | " self.dataset_train = train_grouper(self.dataset.train)\n",
|
46 | 52 | " self.dataset_test = test_grouper(self.dataset.test)\n",
|
47 |
| - " \n", |
| 53 | + "\n", |
48 | 54 | " def get_params(self, trial) -> dict:\n",
|
49 | 55 | " return {\n",
|
50 |
| - " \"context_length\": trial.suggest_int(\"context_length\", dataset.metadata.prediction_length, dataset.metadata.prediction_length*10,4),\n", |
51 |
| - " \"batch_size\": trial.suggest_int(\"batch_size\", 128, 256, 64),\n", |
52 |
| - " \"depth\": trial.suggest_int(\"depth\", 2, 16,4),\n", |
53 |
| - " \"dim\": trial.suggest_int(\"dim\", 16, 64, 16),\n", |
54 |
| - " \"patch_size\": trial.suggest_int(\"dim\", 2, 16,4),\n", |
55 |
| - " \"kernel_size\": trial.suggest_int(\"dim\", 9, 18, 3),\n", |
| 56 | + " \"context_length\": trial.suggest_int(\n", |
| 57 | + " \"context_length\",\n", |
| 58 | + " dataset.metadata.prediction_length,\n", |
| 59 | + " dataset.metadata.prediction_length * 10,\n", |
| 60 | + " 4,\n", |
| 61 | + " ),\n", |
| 62 | + " \"batch_size\": trial.suggest_int(\"batch_size\", 128, 256, 64),\n", |
| 63 | + " \"depth\": trial.suggest_int(\"depth\", 2, 16, 4),\n", |
| 64 | + " \"dim\": trial.suggest_int(\"dim\", 16, 64, 16),\n", |
| 65 | + " \"patch_size\": trial.suggest_int(\"dim\", 2, 16, 4),\n", |
| 66 | + " \"kernel_size\": trial.suggest_int(\"dim\", 9, 18, 3),\n", |
56 | 67 | " }\n",
|
57 |
| - " \n", |
| 68 | + "\n", |
58 | 69 | " def __call__(self, trial):\n",
|
59 | 70 | " params = self.get_params(trial)\n",
|
60 | 71 | " estimator = estimator = ConvTSMixerEstimator(\n",
|
61 |
| - " #distr_output=StudentTOutput(dim=int(dataset.metadata.feat_static_cat[0].cardinality)),\n", |
| 72 | + " # distr_output=StudentTOutput(dim=int(dataset.metadata.feat_static_cat[0].cardinality)),\n", |
62 | 73 | " input_size=int(self.dataset.metadata.feat_static_cat[0].cardinality),\n",
|
63 |
| - "\n", |
64 | 74 | " prediction_length=self.dataset.metadata.prediction_length,\n",
|
65 |
| - " context_length=self.dataset.metadata.prediction_length*5,\n", |
| 75 | + " context_length=self.dataset.metadata.prediction_length * 5,\n", |
66 | 76 | " freq=self.dataset.metadata.freq,\n",
|
67 | 77 | " scaling=\"std\",\n",
|
68 |
| - "\n", |
69 | 78 | " depth=params[\"depth\"],\n",
|
70 | 79 | " patch_size=(params[\"patch_size\"], params[\"patch_size\"]),\n",
|
71 | 80 | " kernel_size=params[\"kernel_size\"],\n",
|
72 | 81 | " dim=params[\"dim\"],\n",
|
73 |
| - "\n", |
74 | 82 | " batch_size=params[\"batch_size\"],\n",
|
75 | 83 | " num_batches_per_epoch=100,\n",
|
76 |
| - " trainer_kwargs=dict(accelerator=\"cuda\", max_epochs=30)\n", |
| 84 | + " trainer_kwargs=dict(accelerator=\"cuda\", max_epochs=30),\n", |
77 | 85 | " )\n",
|
78 | 86 | " predictor = estimator.train(\n",
|
79 |
| - " training_data=self.dataset_train,\n", |
80 |
| - " num_workers=8,\n", |
81 |
| - " shuffle_buffer_length=1024\n", |
| 87 | + " training_data=self.dataset_train, num_workers=8, shuffle_buffer_length=1024\n", |
| 88 | + " )\n", |
| 89 | + "\n", |
| 90 | + " forecast_it, ts_it = make_evaluation_predictions(\n", |
| 91 | + " dataset=self.dataset_test, predictor=predictor, num_samples=100\n", |
82 | 92 | " )\n",
|
83 |
| - " \n", |
84 |
| - " forecast_it, ts_it = make_evaluation_predictions(dataset=self.dataset_test,\n", |
85 |
| - " predictor=predictor,\n", |
86 |
| - " num_samples=100)\n", |
87 | 93 | " forecasts = list(forecast_it)\n",
|
88 | 94 | " tss = list(ts_it)\n",
|
89 |
| - " evaluator = MultivariateEvaluator(quantiles=(np.arange(20)/20.0)[1:],\n", |
90 |
| - " target_agg_funcs={'sum': np.sum})\n", |
| 95 | + " evaluator = MultivariateEvaluator(\n", |
| 96 | + " quantiles=(np.arange(20) / 20.0)[1:], target_agg_funcs={\"sum\": np.sum}\n", |
| 97 | + " )\n", |
91 | 98 | " agg_metrics, _ = evaluator(iter(tss), iter(forecasts))\n",
|
92 | 99 | " return agg_metrics[self.metric_type]"
|
93 | 100 | ]
|
|
102 | 109 | "outputs": [],
|
103 | 110 | "source": [
|
104 | 111 | "dataset = get_dataset(\"solar_nips\", regenerate=False)\n",
|
105 |
| - "train_grouper = MultivariateGrouper(max_target_dim=int(dataset.metadata.feat_static_cat[0].cardinality))\n", |
| 112 | + "train_grouper = MultivariateGrouper(\n", |
| 113 | + " max_target_dim=int(dataset.metadata.feat_static_cat[0].cardinality)\n", |
| 114 | + ")\n", |
106 | 115 | "\n",
|
107 |
| - "test_grouper = MultivariateGrouper(num_test_dates=int(len(dataset.test)/len(dataset.train)), \n", |
108 |
| - " max_target_dim=int(dataset.metadata.feat_static_cat[0].cardinality))\n", |
| 116 | + "test_grouper = MultivariateGrouper(\n", |
| 117 | + " num_test_dates=int(len(dataset.test) / len(dataset.train)),\n", |
| 118 | + " max_target_dim=int(dataset.metadata.feat_static_cat[0].cardinality),\n", |
| 119 | + ")\n", |
109 | 120 | "dataset_train = train_grouper(dataset.train)\n",
|
110 | 121 | "dataset_test = test_grouper(dataset.test)"
|
111 | 122 | ]
|
|
0 commit comments