-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsir.py
1649 lines (1424 loc) · 59.8 KB
/
sir.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# -*- coding: utf-8 -*-
"""
Created on Mon Jul 6 09:29:03 2020
@author: Rodrigo
"""
import numpy as np
import matplotlib.pyplot as plt
import scipy.optimize
import scipy.integrate
import scipy.interpolate
import warnings
#%%
class SIR():
"""
A CLASS FOR A SIMPLE SIR EPIDEMIOLOGICAL MODEL
\dot{S} = -(1 - u) \\beta S I
\dot{I} = (1 - u) \\beta S I - \gamma I
THIS PARTICULAR CASE CONSIDERS A MAXIMUM POPULATION THAT CAN BE
HOSPITALIZED AT THE SAME TIME, imax. THIS CLASS MAKES ALMOST NO USE OF
NUMERICAL METHODS, GIVEN THAT MANY SOLUTIONS TO THE PRESENTED PROBLEMS CAN
BE GIVEN ANALYTICALLY. HOWEVER, THE TIMES ASSOCIATED TO THE DIFFERENT
TRAYECTORIES *ARE* CALCULATED NUMERICALLY.
THE CLASS CONTAINS SEVERAL ATTRIBUTES AND METHODS.
ATTRIBUTES:
imax: FLOAT BETWEEN 0 AND 1. REPRESENTS THE FRACTION OF THE POPULATION
THAT CAN BE IN MEDICAL FACILITIES AT THE SAME TIME. IN OTHER WORDS, A
MEDICAL-FACILITY SATURATION POPULATION.
umax: FLOAT BETWEEN 0 AND 1. THE INTENSITY OF THE CONTROL. IN THIS
CASE, A DECREASE IN THE INFECTION RATE.
gamma: HEALING RATE.
beta: INFECTION RATE.
sbar: A CRITICAL POPULATION DEFINED AS self.gamma/self.beta. WITH
s < sbar, THE INFECTED POPULATION STARTS TO DECREASE INSTEAD OF
INCREASE.
sstar: SIMILAR TO sbar. INSTEAD OF BEING A CRITICAL POPULATION FOR THE
NATURAL PROGRESION OF THE EPIDEMIC, IT IS A CRITICAL POPULATION FOR THE
EPIDEMIC WITH u != 0.
tau: A CURVE THAT REPRESENTS THE NATURAL PROGRESSION OF THE EPIDEMIC
AND PASSES THROUGH self.imax AND self.sbar. ANY TRAJECTORY STARTING TO
THE RIGHT OF THIS CURVE, IS IMMEDIATELY IN A "SAFE ZONE" OF "HERD
IMMUNITY".
phi: THE EQUIVALENT OF self.tau, BUT WITH u != self.umax. PASSES
THROUGH self.sstar AND self.imax.
theta: A SOLUTION TO THE DIFFERENTIAL EQUATION THAT PASSES THROUGH THE
INTERSECTION OF self.tau WITH ZERO WITH u == self.umax.
rho: A SOLUTION TO THE DIFFERENTIAL EQUATION WITH u == 0, THAT PASSES
THROUGH self.sstar AND self.imax.
points: A LIST OF Point OBJECTS INSIDE THE SYSTEM. THESE ARE USED TO
DETERMINE TRAJECTORIES.
METHODS:
set_params: A METHOD THAT SETS THE VALUES OF THE PARAMETERS. USES THE
"HIDDEN" METHODS _set_imax, _set_umax, _set_gamma AND _set_beta.
MODIFIES THE VALUES OF THE ATTRIBUTES self.imax, self.umax ET CETERA.
_curve: A METHOD THAT CALCULATES THE I-VALUES OF THE S-VALUES GIVEN,
WITH A GIVEN VALUE OF u.
find_curves: FINDS AND SETS THE VALUES FOR self.tau, self.phi,
self.theta AND self.rho. USES THE METHODS self.find_tau ET CETERA.
add_point: ADDS A Point OBJECT TO self.points.
find_regions: FINDS THE REGION IN WHICH EVERY POINT IN THE SYSTEM IS.
get_trajectories: GETS A SAMPLE OF Trajectory OBJECTS FOR EVERY Point
IN THE SYSTEM.
get_shortest: GETS THE SHORTEST Trajectory (IN TIME, NOT LENGTH) FOR
EACH OF THE Point OBJECTS IN THE SYSTEM.
"""
params_set = False
def __init__(self):
self.params = None
self.tau = None
self.phi = None
self.theta = None
self.rho = None
self.points = []
self.commutation_curve = None
def set_params(self, args, flag):
"""
A FUNCTION THAT SETS THE PARAMETERS OF THE SYSTEM. ITS INPUTS ARE A
LIST OR OTHER ITERABLE OBJECT WITH THE PARAMETER VALUES, AND A flag
THAT DETERMINES WETHER THE RECEIVED VALUES ARE FOR beta AND gamma, OR
R0 AND Rc.
"""
self.params_set = True
if flag == "bg":
self._set_betagamma(args)
elif flag == "r":
self._set_r(args)
else:
print("Value type not recognized. "
"Flag has to be either 'bg' or 'r'.")
return
self.sbar = self.gamma/self.beta
self.sstar = self.gamma / ((1 - self.umax)*self.beta)
self._find_curves()
def _set_r(self, args):
"""
INPUT ARGUMENTS ARE Imax, umax and R0, IN THAT ORDER.
"""
self.imax, self.umax, R0 = args
self.gamma = 1 / 7
self.beta = R0 * self.gamma
def _set_betagamma(self, args):
"""
INPUT ARGUMENTS ARE imax, umax, gamma AND beta, IN THAT ORDER.
"""
self.imax, self.umax, self.gamma, self.beta = args
def _curve(self, s = None, s_ref = None, i_ref = None, u = None):
"""
A FUNCTION THAT RETURNS A CURVE OF PROGRESSION OF THE SYSTEM FROM A
GIVEN INITIAL CONDITION.
IN:
s: VALUES AT WHICH THE CURVE IS TO BE EVALUATED.
s_ref: A REFERENCE POINT FOR S. THE CURVE PASSES THROUGH THIS
POINT.
i_ref: A REFERENCE POINT FOR I. THE CURVE PASSES THROUGH THIS
POINT.
u: THE VALUE OF u. USUALLY, IT IS EITHER 0 OR self.umax.
OUT:
i_range: THE VALUES OF I FOR EACH VALUE OF s.
"""
p1 = self.gamma / ((1 - u)*self.beta)
p2 = np.log(s / s_ref)
p3 = s - s_ref
i_range = p1*p2 - p3 + i_ref
return i_range
def _find_tau(self):
"""
A CurveSegment THAT PASSES THROUGH self.sbar AND self.imax WITH u == 0.
THE CURVE IS THE LIMIT FOR THE SAFE ZONE.
"""
s_range = np.linspace(max(1, self.phi.s[0]),
self.sbar,
10000, endpoint
= True)
i_range = self._curve(s_range, self.sbar, self.imax, 0)
self.tau = CurveSegment(s_range, i_range, 0, self)
def _find_phi(self):
"""
A CurveSegment THAT PASSES THROUGH self.sstar AND self.imax WITH
u == self.umax.
"""
s_range = np.linspace(2, 0, 10000, endpoint = False)
i_range = self._curve(s_range, self.sstar, self.imax, self.umax)
self.phi = CurveSegment(s_range, i_range, self.umax, self)
new_endpoint = self.phi._curve_sol(0)[0]
s_range = np.linspace(max(1, new_endpoint),
0,
10000,
endpoint = False)
i_range = self._curve(s_range, self.sstar, self.imax, self.umax)
self.phi = CurveSegment(s_range, i_range, self.umax, self)
def _find_theta(self):
"""
A CurveSegment THAT PASSES THROUGH THE INTERSECTION BETWEEN self.tau
WITH 0, WITH u == self.umax. TRAJECTORIES THAT START BELOW THIS CURVE
CANNOT REACH self.tau BY SETTING u == self.umax FROM THE BEGGINING.
RATHER, THEY NEED TO GET OUT OF THAT REGION BY SETTING u == 0, AND
ONLY THEN CAN THEY SET u == self.umax (OR AFTERWARDS).
"""
s_init = self.tau.curve_intersection(self.phi)
#print(s_init)
s_zero = scipy.optimize.fsolve(self._curve, x0 = s_init[0],
args = (self.sbar, self.imax, 0))
#print(s_zero)
s_range = np.linspace(max(1, self.phi.s[0]),
0,
10000,
endpoint = False)
i_range = self._curve(s_range, s_zero, 0, self.umax)
self.theta = CurveSegment(s_range, i_range, self.umax, self)
def _find_rho(self):
"""
A CurveSegment THAT PASSES THROUGH self.sstar AND self.imax.
TRAJECTORIES STARTING TO THE RIGHT OF THIS CurveSegment WILL NOT BE
ABLE TO REACH THE SINGULAR ARC DIRECTLY, BUT WILL HAVE TO GO THROUGH
self.phi BEFORE.
"""
s_range = np.linspace(max(1, self.phi.s[0]),
0,
10000,
endpoint = False)
i_range = self._curve(s_range, self.sstar, self.imax, 0)
self.rho = CurveSegment(s_range, i_range, 0, self)
def _find_curves(self):
self._find_phi()
self._find_tau()
self._find_theta()
self._find_rho()
def add_point(self, s0, i0):
Px = Point(s0, i0)
self.points.append(Px)
return Px
def find_region(self, p):
idx_tau = np.searchsorted(np.flip(self.tau.s, 0), p.s0)
idx_tau = len(self.tau.s) - idx_tau
idx_phi = np.searchsorted(np.flip(self.phi.s, 0), p.s0)
idx_phi = len(self.phi.s) - idx_phi
idx_theta = np.searchsorted(np.flip(self.theta.s, 0), p.s0)
idx_theta = len(self.theta.s) - idx_theta
idx_rho = np.searchsorted(np.flip(self.rho.s, 0), p.s0)
idx_rho = len(self.rho.s) - idx_rho
if (p.s0 <= self.sbar
or p.i0 <= self.tau.i[idx_tau]):
p.region = 1
elif (p.i0 > self.imax
or (p.i0 > self.phi.i[idx_phi]
and p.s0 > self.sstar)):
p.region = 5
elif (p.i0 <= self.rho.i[idx_rho]
and p.i0 >= self.tau.i[idx_tau]
and p.i0 >= self.theta.i[idx_theta]):
p.region = 2
elif (p.s0 >= self.sstar
and p.i0 <= self.phi.i[idx_phi]
and p.i0 >= self.theta.i[idx_theta]):
p.region = 3
elif (p.i0 < self.theta.i[idx_theta]):
p.region = 4
def find_regions(self):
"""
A METHOD THAT DETERMINES THE REGION IN SPACE IN WHICH EACH Point OBJECT
OF self.points IS. THE REGION IS DETERMINED BY THE CurveSegment OBECTS
OF THE SYSTEM: self.tau, self.phi, self.theta AND self.rho. BRIEFLY:
1: SAFE ZONE.
2: CAN REACH self.tau BY STARTING WITH u == self.umax AT t == 0,
REACHING THE SINGULAR ARC WITH u == 0 AND FOLLOWING IT, OR AT ANY
INTERMEDIATE POINT.
3: CAN REACH self.tau BY STARTING WITH u == self.umax AT t == 0,
BUT HAS TO GO THROUGH self.phi BEFORE REACHING THE SINGULAR ARC.
4: HAS TO SET u == 0 UNTIL THE TRAJECTORY LEAVES REGION 4. THEN
CAN REACH self.tau DEPENDING ON WHAT THE NEW REGION IS.
5: CANNOT REACH self.tau WITHOUT EXCEEDING self.imax.
"""
for p in self.points:
if not p.region is None:
pass
else:
self.find_region(p)
def get_trajectories(self):
for p in self.points:
Tx = TrajectoryCreator(p, self)
Tx.get_trajectories()
p.trajectories = Tx.trajectories
def get_shortest(self):
for p in self.points:
Mx = MinimumTrajectory(p, self)
Mx.find_commutation()
p.least_time = Mx.trajectory
def remove_all_points(self):
self.points = []
#%%
class PlotSIR():
def __init__(self, obj):
self.subject = obj
self.fig, self.ax = plt.subplots()
def show(self):
self.ax.set_xlim(0, 1)
self.ax.set_ylim(0, min(self.subject.imax * 1.1, 1))
self.ax.set_xlabel("S")
self.ax.set_ylabel("I")
if self.subject.params_set:
self.ax.plot(self.subject.sbar, self.subject.imax, "bx")
self.ax.plot(self.subject.sstar, self.subject.imax, "rx")
self.ax.plot([0, 1], [self.subject.imax]*2, "r--")
self.ax.plot(self.subject.tau.s, self.subject.tau.i, "b-")
self.ax.plot(self.subject.phi.s, self.subject.phi.i, "r-")
self.ax.plot(self.subject.theta.s, self.subject.theta.i, "g-")
self.ax.plot(self.subject.rho.s, self.subject.rho.i, "k-")
#%%
class Point():
"""
A CLASS FOR A POINT IN A GIVEN SYSTEM.
THE CLASS CONTAINS DIFFERENT ATTRIBUTES AND METHODS.
ATTRIBUTES:
s0: THE S COORDINATE OF THE POINT.
i0: THE I COORDINATE OF THE POINT.
state: AN ARRAY CONTAINING THE S AND I COORDINATES OF THE POINT.
region: AN INTEGER DENOTING THE REGION IN WHICH THE POINT IS, RELATIVE
TO THE CURVES OF THE SYSTEM THAT CONTAINS IT.
trajectories: AN ARRAY OF TRAJECTORIES THAT GO FROM THE POINT TO ANY
POINT OF THE "SAFE REGION" IN THE SYSTEM THAT CONTAINS IT. IF THE
POINT IS IN REGION 5, ALL TRAJECTORIES ARE FauxTrajectories THAT
SERVE AS PLACEHOLDERS FOR REAL TRAJECTORIES, SO THE CODE DOESN'T
BREAK AT UNWANTED PLACES.
times: AN ARRAY OF THE TOTAL TIME OF EACH OF THE TRAJECTORIES IN
self.trajectories.
i_times: AN ARRAY OF THE TIME OF EACH OF THE TRAJECTORIES IN
self.trajectories SINCE THE MOMENT OF INTERVENTION. THIS CAN BE A
CurveSegment WITH u!=0, OR A LineSegment.
METHODS:
self.get_times(): A METHOD THAT CREATES THE ATTRIBUTE self.times.
self.get_i_times(): A METHOD THAT CREATES THE ATTRIBUTE self.i_times.
"""
def __init__(self, s0:float, i0:float):
self.s0 = s0
self.i0 = i0
self.state = np.array([self.s0, self.i0]).reshape([2, 1])
self.region = None
self.trajectories = None
self.least_time = None
def __repr__(self):
out = "Point object at (s, i) = ({:.2f}, {:.2f}).".format(self.s0,
self.i0)
return out
def __print__(self):
out = "Point object at (s, i) = ({:.2f}, {:.2f}).".format(self.s0,
self.i0)
return out
def get_times(self):
"""
A METHOD THAT CREATES THE ATTRIBUTE self.times. IF THE POINT IS LOCATED
IN REGION 5, THIS RETURNS A None VALUE. ELSE, AN ARRAY WITH THE TOTAL
TIME OF ALL THE TRAJECTORIES IS CREATED.
"""
if self.region == 5:
self.times = None
return
self.times = np.array([tra.get_time() for tra in self.trajectories])
def get_i_times(self):
"""
A METHOD THAT CREATES THE ATTRIBUTE self.i_times. IF THE POINT IS
LOCATED IN REGION 5, THIS RETURNS A None VALUE. OTHERWISE, AN ARRAY
WITH THE TIME SINCE INTERVENTION OF EVERY TRAJECTORY IN
self.trajectories IS CREATED.
"""
if self.region == 5:
self.times = None
return
self.i_times = np.array([tra.get_intervention_time() for
tra in self.trajectories])
def get_least_time(self):
"""
A METHOD THAT RETURNS THE TRAJECTORY OF LEAST TOTAL TIME. IF THE POINT
IS LOCATED IN REGION 5 OF THE SYSTEM, A FauxTrajectory IS RETURNED.
OTHERWISE, THE RETURN VALUE IS THE TRAJECTORY OF LEAST TIME.
"""
if self.region == 5:
return self.trajectories[0]
least_idx = np.where(self.times == min(self.times))
return self.trajectories[least_idx][0]
def get_least_intervention(self):
"""
A METHOD THAT RETURNS THE TRAJECTORY OF LEAST INTERVENTION TIME. IF THE
POINT IS LOCATED IN REGION 5 OF THE SYSTEM, A FauxTrajectory IS
RETURNED. OTHERWISE, THE RETURN VALUE IS THE TRAJECTORY OF LEAST
INTERVENTION TIME.
"""
if self.region == 5:
return self.trajectories[0]
least_idx = np.where(self.i_times == min(self.i_times))
return self.trajectories[least_idx][0]
def minimize_time(self):
"""
SOMETHING I'M STILL NOT VERY SURE HOW IT'S GOING TO WORK.
"""
#%%
class CurveSegment():
"""
AN OBJECT THAT REPRESENTS A CURVE SEGMENT IN A GIVEN SYSTEM. IT IS
INSTANTIATED WITH FOUR VARIABLES, PLUS TWO OPTIONAL.
IN:
s: EITHER FLOAT OF NP.ARRAY.
i: EITHER FLOAT OF NP.ARRAY.
u: FLOAT. DETERMINES THE VALUE OF THE CONTROL INPUT IN THE CURVE.
system: THE SYSTEM TO WHICH THE CURVE BELONGS.
s_end: THE ENDPOINT OF THE CURVE. IF NOT STATED, IT WILL DEFAULT TO 0.
THIS "ENSURES" THAT CURVES ALWAYS MOVE TO THE LEFT.
size: THE AMOUNT OF POINTS IN THE CURVE. DEFAULTS TO 50.
THE OBJECT CONTAINS SEVERAL ATTRIBUTES AND METHODS.
ATTRIBUTES:
u: VALUE OF THE CONTROL INPUT.
system: THE SYSTEM TO WHICH THE CurveSegment BELONGS.
imax: THE VALUE OF THE MAXIMUM HOSPITAL CAPACITY IN A GIVEN SYSTEM.
USED ONLY FOR CALCULATIONS.
gamma: THE VALUE OF THE RATE OF RECOVERY IN THE INFECTED POPULATION.
USED ONLY FOR CALCULATIONS.
beta: THE VALUE OF THE RATE OF INFECTION. USED ONLY FOR CALCULATIONS.
s: AN NP.ARRAY CONTAINING THE S-COORDINATES OF THE CURVE.
i: AN NP.ARRAY CONTAINING THE I-COORDINATES OF THE CURVE.
s_ref: A REFERENCE POINT WHERE THE CURVE PASSES IN S. USED MAINLY FOR
CURVE CONSTRUCTION.
i_ref: A REFERENCE POINT WHERE THE CURVE PASSES IN I. USED MAINLY FOR
CURVE CONTSTRUCTION.
time: TIME NEEDED TO GO FROM THE RIGHT TO THE LEFT SIDE OF THE CURVE.
"""
def __init__(self, s, i, u:float, system:SIR, s_end = 0, size = 50):
self.u = u
self.ustart = self.u
self.uend = self.u
self.system = system
self.imax = self.system.imax
self.gamma = self.system.gamma
self.beta = self.system.beta
self.time = None
if not isinstance(s, float) and not isinstance(i, float):
self.s = s
self.i = i
self.s_ref = self.s[0]
self.i_ref = self.i[0]
else:
self.s_ref = s
self.i_ref = i
if s_end == 0:
self.s = np.linspace(self.s_ref, s_end, endpoint = False,
num = size)
else:
self.s = np.linspace(self.s_ref, s_end, endpoint = True,
num = size)
self.i = self._curve(self.s, self.s_ref, self.i_ref)
def __repr__(self):
out = ("Curve segment:\n"
"\tu = {:.2f}\n"
"\ts_ref = {:.2f}\n"
"\ti_ref = {:.2f}\n").format(self.u, self.s_ref, self.i_ref)
if not self.time is None:
out += "\tt = {:.2f}\n".format(self.time)
return out
def __print__(self):
out = ("Curve segment:\n"
"\tu = {:.2f}\n"
"\ts_ref = {:.2f}\n"
"\ti_ref = {:.2f}\n").format(self.u, self.s_ref, self.i_ref)
if not self.time is None:
out += "\tt = {:.2f}\n".format(self.time)
return out
def _curve(self, s, s_0 = None, i_0 = None, i_ref = 0):
"""
A FUNCTION THAT RETURNS A CURVE OF PROGRESSION OF THE SYSTEM FROM A
GIVEN INITIAL CONDITION.
"""
if s_0 is None:
s_0 = self.s_ref
if i_0 is None:
i_0 = self.i_ref
p1 = self.gamma / ((1 - self.u)*self.beta)
p2 = np.log(s / s_0)
p3 = s - s_0
i_range = (p1*p2) - p3 + i_0 - i_ref
return i_range
def _int(self, s):
"""
A FUNCTION TO BE INTEGRATED, USED TO CALCULATE THE TIME TO GO FROM THE
RIGHT TO THE LEFT SIDE OF THE CURVE.
"""
return 1 / (s * self._curve(s))
def _curve_sol(self, i_ref = 0):
"""
A FUNCTION THAT RETURNS THE COORDINATES AT WHICH THE CURVE'S I-VALUE
EQUALS i_ref.
IN:
i_ref: REFERENCE VALUE TO FIND SOLUTION FOR. IF NOT SPECIFIED,
DEFAULTS TO 0.
OUT:
AN NP.ARRAY OF SHAPE [2, ] WITH THE S AND I COORDINATES OF THE
INTERSECTION.
"""
sol = scipy.optimize.fsolve(self._curve, self.s_ref,
args = (None, None, i_ref))
i = self._curve(sol)
return np.array([sol, i]).reshape([2, ])
def curve_intersection(self, other):
"""
A FUNCTION THAT DETERMINES THE COORDINATES AT WHICH TWO CURVES
INTERSECT.
IN:
other: ANOTHER CURVE OBJECT.
OUT:
AN NP.ARRAY OF SHAPE [2, ] WITH THE S AND I COORDINATES OF THE
INTERSECTION.
"""
denom = (1 / (1 - self.u)) - (1 / (1 - other.u))
num = ((self.beta / self.gamma)*(other.s_ref - self.s_ref
+ other.i_ref - self.i_ref)
+ (1/(1 - self.u)*np.log(self.s_ref))
- (1/(1 - other.u)*np.log(other.s_ref)))
s_intersect = np.exp(num/denom)
i_intersect = self._curve(s_intersect, self.s_ref, self.i_ref)
return np.array([s_intersect, i_intersect])
def get_time(self, start = None, end = None):
"""
A METHOD THAT CREATES THE ATTRIBUTE self.time. IT INTEGRATES THE
FUNCTION self._int TO CALCULATE THE TIME IT TAKES TO MOVE FROM THE
RIGHT TO THE LEFT EXTREMES OF THE CURVE.
IN:
start: A STARTING POINT TO THE INTEGRATION. DEFAULTS TO THE FIRST
S-COORDINATE IN THE TRAJECTORY.
end: AN ENDING POINT TO THE INTEGRATION. DEFAULTS TO THE LAST
S-COORDINATE IN THE TRAJECTORY.
I SHOULD CONSIDER DELETING THESE INPUT VALUES, AS THERE IS REALLY
NO POINT TO THEM. THERE IS, AS OF YET, NO REASON TO CHANGE THE
INTEGRATION RANGE.
"""
if start is None:
start = self.s[0]
end = self.s[-1]
t, err = scipy.integrate.quad(self._int, start, end)
t = -t / ((1 - self.u) * self.beta)
self.time = t
#%%
class LineSegment():
"""
AN OBJECT THAT REPRESENTS A LINE SEGMENT OF THE SINGULAR CURVE OF THE
SYSTEM; A STRAIGHT LINE OF GRADIENT 0 THAT BETWEEN TWO DIFFERENT POINTS IN
S, ALONG THE imax OF THE SYSTEM. IT IS INSTATIATED WITH THREE PARAMETERS,
AND AN OPTIONAL ONE.
IN:
s_start: INITIAL POINT OF THE LINE.
s_end: LAST POINT OF THE LINE.
system: SYSTEM TO WHICH THE LINE BELONGS.
size: AMOUNT OF POINTS ALONG THE LINE. DEFAULTS TO 50.
THE OBJECT HAS SEVERAL ATTRIBUTES AND METHODS.
ATTRIBUTES:
system: THE SYSTEM THAT CONTAINS THE LINE SEGMENT.
s: AN NP.ARRAY CONTAINING THE S-COORDINATES OF THE SEGMENT.
i: THE I-COORDINATES OF THE SEGMENT. BASICALLY, AN NP.ARRAY OF size
TIMES THE SYSTEM'S imax.
sstart: INITIAL POINT OF THE LINE SEGMENT. USUALLY BIGGER THAN send.
send: LAST POINT OF THE LINE SEGMENT. USUALLY SMALLER THAT sstart.
time: THE AMOUNT OF ELAPSED TIME TO GO FROM sstart TO send ALONG THE
LINE SEGMENT.
METHODS:
get_time: CREATES THE ATTRIBUTE self.time.
"""
def __init__(self, s_start, s_end, i, system, size = 50):
self.system = system
self.s = np.linspace(s_start, s_end, num = size)
self.i = np.array([i]*len(self.s))
self.sstart = s_start
self.send = s_end
self.ustart = self.u_from_s(s_start)
self.uend = self.u_from_s(s_end)
self.time = None
def __repr__(self):
out = ("Line segment:\n"
"\ts0 = {:.2f}\n"
"\tsf = {:.2f}\n"
"\ti = {:.2f}\n"
"\tu = {:.2} to {:.2}\n").format(self.sstart, self.send,
self.i[0], self.ustart,
self.uend)
if not self.time is None:
out += "\tt = {:.2f}\n".format(self.time)
return out
def __print__(self):
out = ("Line segment:\n"
"\ts0 = {:.2f}\n"
"\tsf = {:.2f}\n"
"\ti = {:.2f}\n"
"\tu = {:.2} to {:.2}\n").format(self.sstart, self.send,
self.i[0], self.ustart,
self.uend)
if not self.time is None:
out += "\tt = {:.2f}\n".format(self.time)
return out
def get_time(self, start = None, end = None):
"""
PRETTY SELF-EXPLANATORY. CALCULATES THE TIME NEEDED TO GO FROM start
TO end ALONG THE LINE SEGMENT.
IN:
start: THE INITIAL POINT FOR CALCULATION. DEFAULTS TO self.sstart.
end: THE LAST POINT FOR CALCULATION. DEFAULTS TO self.send.
I SHOULD CONSIDER DELETING THESE INPUT VARIABLES AS THEY REALLY
DON'T CONTRIBUTE MUCH IN THE REAL USE OF THE OBJECT.
"""
if start is None:
start = self.sstart
if end is None:
end = self.send
num = start - end
denom = self.system.gamma * self.system.imax
self.time = num / denom
def u_from_s(self, s):
"""
A FUNCTION TO DETERMINE THE VALUE OF u FOR A GIVEN s-COORDINATE ALONG
THE SINGULAR ARC OF THE SYSTEM.
IN:
s: s-COORDINATE FOR WHICH THE VALUE OF u NEEDS TO BE FOUND.
OUT:
VALUE OF u FOR THE GIVEN s-COORDINATE.
"""
m = self.system.umax / (self.system.sstar - self.system.sbar)
b = ((self.system.sbar * self.system.umax)
/ (self.system.sstar - self.system.sbar))
return m*s - b
#%%
class SingularCurve(LineSegment):
"""
A CLASS THAT REPRESENTS THE SINGULAR CURVE.
"""
def __init__(self, s_start, s_end, system, size = 50):
self.system = system
self.s = np.linspace(s_start, s_end, num = size)
self.i = np.array([self.system.imax]*len(self.s))
self.sstart = s_start
self.send = s_end
self.ustart = self.u_from_s(s_start)
self.uend = self.u_from_s(s_end)
self.time = None
def __repr__(self):
out = ("Singular Curve:\n"
"\ts0 = {:.2f}\n"
"\tsf = {:.2f}\n"
"\tu = {:.2} to {:.2}\n").format(self.sstart, self.send,
self.ustart, self.uend)
if not self.time is None:
out += "\tt = {:.2f}\n".format(self.time)
return out
def __print__(self):
out = ("Singular Curve:\n"
"\ts0 = {:.2f}\n"
"\tsf = {:.2f}\n"
"\tu = {:.2} to {:.2}\n").format(self.sstart, self.send,
self.ustart, self.uend)
if not self.time is None:
out += "\tt = {:.2f}\n".format(self.time)
return out
def get_time(self, start = None, end = None):
"""
PRETTY SELF-EXPLANATORY. CALCULATES THE TIME NEEDED TO GO FROM start
TO end ALONG THE LINE SEGMENT.
IN:
start: THE INITIAL POINT FOR CALCULATION. DEFAULTS TO self.sstart.
end: THE LAST POINT FOR CALCULATION. DEFAULTS TO self.send.
I SHOULD CONSIDER DELETING THESE INPUT VARIABLES AS THEY REALLY
DON'T CONTRIBUTE MUCH IN THE REAL USE OF THE OBJECT.
"""
if start is None:
start = self.sstart
if end is None:
end = self.send
num = start - end
denom = self.system.gamma * self.system.imax
self.time = num / denom
def u_from_s(self, s):
"""
A FUNCTION TO DETERMINE THE VALUE OF u FOR A GIVEN s-COORDINATE ALONG
THE SINGULAR ARC OF THE SYSTEM.
IN:
s: s-COORDINATE FOR WHICH THE VALUE OF u NEEDS TO BE FOUND.
OUT:
VALUE OF u FOR THE GIVEN s-COORDINATE.
"""
m = self.system.umax / (self.system.sstar - self.system.sbar)
b = ((self.system.sbar * self.system.umax)
/ (self.system.sstar - self.system.sbar))
return m*s - b
#%%
class TrajectoryCreator():
"""
AN OBJECT THAT CREATES A SAMPLE OF PATHS FROM AN INITIAL POINT IN THE
SYSTEM TO DIFFERENT POINTS IN SIR.tau. IT IS INSTATIATED WITH AN OBJECT
OF CLASS Point, AND AN OBJECT OF CLASS SIR.
THE CLASS HAS SEVERAL ATTRIBUTES AND METHODS
ATTRIBUTES:
point: THE POINT AT WHICH THE TRAJECTORY STARTS.
region: THE REGION TO WHICH THAT POINT BELONGS. DEPENDING ON THE
REGION, THE METHOD FOR CREATING THE TRAJECTORY VARIES.
system: THE SYSTEM TO WHICH THE TRAJECTORY BELONGS.
curve_u0: A CURVE THAT GOES FROM THE INITIAL POINT UNTIL ITS
INTERSECTION WITH imax. ONLY CREATED IN CERTAIN CONIDTIONS.
curve_umax: A CURVE THAT GOES FROM THE INITIAL POINT UNTIL ITS
INTERSECTION WITH system.tau. ONLY CREATED IN CERTAIN CONDITIONS.
u0_imax_intersection: A [2, ] NP.ARRAY. ITS CONTENTS ARE SELF-
EXPLANATORY.
umax_tau_intersection: A [2, ] NP.ARRAY. ITS CONTENTS ARE SELF-
EXPLANATORY.
shortest: THE TRAJECTORY OF LEAST TIME.
"""
def __init__(self, Point:Point, system:SIR):
self.point = Point
self.region = Point.region
self.system = system
if self.region == 1:
pass
elif self.region == 2:
self.curve_u0 = CurveSegment(self.point.s0, self.point.i0,
0, self.system)
self.u0_imax_intersection = self.curve_u0._curve_sol(self.system.imax)
self.curve_u0 = CurveSegment(self.point.s0, self.point.i0, 0,
self.system, self.u0_imax_intersection[0])
self.curve_umax = CurveSegment(self.point.s0, self.point.i0,
self.system.umax, self.system)
self.umax_tau_intersection = self.curve_umax.curve_intersection(self.system.tau)
self.curve_umax = CurveSegment(self.point.s0, self.point.i0,
self.system.umax, self.system,
self.umax_tau_intersection[0])
elif self.region == 3:
self.curve_u0 = CurveSegment(self.point.s0, self.point.i0,
0, self.system)
self.u0_imax_intersection = self.curve_u0._curve_sol(self.system.imax)
self.curve_u0 = CurveSegment(self.point.s0, self.point.i0, 0,
self.system, self.u0_imax_intersection[0])
self.curve_umax = CurveSegment(self.point.s0, self.point.i0,
self.system.umax, self.system)
self.umax_tau_intersection = self.curve_umax.curve_intersection(self.system.tau)
self.curve_umax = CurveSegment(self.point.s0, self.point.i0,
self.system.umax, self.system,
self.umax_tau_intersection[0])
elif self.region == 4:
self.curve_u0 = CurveSegment(self.point.s0, self.point.i0,
0, self.system)
self.curve_umax = CurveSegment(self.point.s0, self.point.i0,
self.system.umax, self.system)
elif self.region == 5:
pass
def _create_branch(self, point):
"""
A METHOD THAT CREATES A CURVE THAT GOES FROM A GIVEN POINT IN A
TRAJECTORY TO THE INTERSECTION WITH tau.
"""
C = CurveSegment(point.s0, point.i0, self.system.umax, self.system)
intersection = C.curve_intersection(self.system.tau)
C = CurveSegment(point.s0, point.i0, self.system.umax, self.system,
intersection[0])
return C
def _method_region_1(self):
"""
METHOD FOR CALCULATING THE PATHS FOR ANY POINT IN REGION 1.
"""
Cx = CurveSegment(self.point.s0, self.point.i0, 0, self.system,
self.point.s0)
Tx = Trajectory(Cx)
self.trajectories = np.array([Tx])
return self.trajectories
def _method_region_2(self):
"""
METHOD FOR CALCULATING THE PATHS FOR ANY POINT IN REGION 2.
"""
#print("Method 2.")
self.u0_imax_intersection = self.curve_u0._curve_sol(self.system.imax)
self.C1 = CurveSegment(self.point.s0,
self.point.i0,
0,
self.system,
self.u0_imax_intersection[0])
self.C2 = SingularCurve(self.u0_imax_intersection[0],
self.system.sbar,
self.system)
self.main_trajectory = Trajectory(self.C1, self.C2)
self.trajectories = np.empty([len(self.main_trajectory.s), ],
dtype = object)
self.trajectories[0] = Trajectory(self.curve_umax)
for point in range(1, len(self.C1.s)):
Px = Point(self.C1.s[point],
self.C1.i[point])
Cx = self._create_branch(Px)
Tx = Trajectory(CurveSegment(self.C1.s_ref,
self.C1.i_ref,
0,
self.system,
self.C1.s[point]),
Cx)
self.trajectories[point] = Tx
for point in range(len(self.C2.s)):
Px = Point(self.C2.s[point],
self.C2.i[point])
Cx = self._create_branch(Px)
Tx = Trajectory(self.C1,
SingularCurve(self.C2.s[0],
self.C2.s[point],
self.system),
Cx)
self.trajectories[point + len(self.C1.s)] = Tx
return self.trajectories
def _method_region_3(self):
"""
METHOD FOR CALCULATING THE PATHS FOR ANY POINT IN REGION 3.
"""
#print("Method 3.")
self.u0_phi_intersection = self.curve_u0.curve_intersection(self.system.phi)
self.C1 = CurveSegment(self.point.s0,
self.point.i0,
0,
self.system,
self.u0_phi_intersection[0])
self.C2 = CurveSegment(self.u0_phi_intersection[0],
self.u0_phi_intersection[1],
self.system.umax,
self.system,
self.system.sstar)
self.C3 = SingularCurve(self.system.sstar,
self.system.sbar,
self.system)
self.main_trajectory = Trajectory(self.C1, self.C2, self.C3)
self.trajectories = np.empty([len(self.C1.s) + len(self.C2.s),],
dtype = object)
self.trajectories[0] = Trajectory(self.curve_umax)
for point in range(1, len(self.C1.s)):
Px = Point(self.C1.s[point],
self.C1.i[point])
Cx = self._create_branch(Px)
Tx = Trajectory(CurveSegment(self.C1.s_ref,
self.C1.i_ref,
0,
self.system,
self.C1.s[point]),
Cx)
self.trajectories[point] = Tx
for point in range(len(self.C3.s)):
Px = Point(self.C3.s[point],
self.C3.i[point])
Cx = self._create_branch(Px)
Tx = Trajectory(self.C1,
self.C2,
SingularCurve(self.system.sstar,
self.C3.s[point],
self.system),
Cx)
self.trajectories[point + len(self.C2.s)] = Tx
return self.trajectories
def _method_region_4(self):
"""
METHOD FOR CALCULATING THE PATHS FOR ANY POINT IN REGION 4.
"""
#print("Method 4.")
self.u0_theta_intersection = self.curve_u0.curve_intersection(self.system.theta)
C1 = CurveSegment(self.point.s0,
self.point.i0,
0,
self.system,
self.u0_theta_intersection[0])
Px = self.system.add_point(C1.s[-1], C1.i[-1]+1e-5)
self.system.find_regions()
Tx = TrajectoryCreator(Px, self.system)
Tx.get_trajectories()
if Px.region == 5:
return
self.trajectories = Tx.trajectories
for trajectory in self.trajectories:
trajectory.add_segment(C1)
self.system.points.remove(Px)
return self.trajectories
def _method_region_5(self):
"""
METHOD FOR CALCULATING THE PATHS FOR ANY POINT IN REGION 5.
"""
print("This point is outside the region that fullfills the desired",
" requirements. Hence, no trajectories are available.")
self.trajectories = np.array([FauxTrajectory()]*100)
return self.trajectories
def get_trajectories(self):
self._methods = {1: self._method_region_1,
2: self._method_region_2,
3: self._method_region_3,
4: self._method_region_4,
5: self._method_region_5}
self._f = self._methods[self.region]
return self._f()
def get_times(self):
"""
A METHOD THAT CALCULATES THE TIME FOR A CERTAIN TRAJECTORY. CALLS UPON
THE METHODS OF TIME CALCULATION OF THE INDIVIDUAL SEGMENTS.
"""
if self.point.region == 1 or self.point.region == 5:
self._times = None
else:
for trajectory in self.trajectories:
trajectory.get_time()
self._times = np.array([tra.time for tra in self.trajectories])
return self._times