-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathuda_dataset_dual.py
232 lines (212 loc) · 10.4 KB
/
uda_dataset_dual.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
# Licensed under the CC BY-NC 4.0 license (https://creativecommons.org/licenses/by-nc/4.0/)
import json
import os.path as osp
import mmcv
import numpy as np
import torch
from mmcv.parallel import DataContainer as DC
from .custom_dual import CustomDatasetDual
from . import CityscapesDataset
from .builder import DATASETS
def get_rcs_class_probs(data_root, temperature):
with open(osp.join(data_root, 'sample_class_stats.json'), 'r') as of:
sample_class_stats = json.load(of)
overall_class_stats = {}
for s in sample_class_stats:
s.pop('file')
for c, n in s.items():
c = int(c)
if c not in overall_class_stats:
overall_class_stats[c] = n
else:
overall_class_stats[c] += n
overall_class_stats = {
k: v
for k, v in sorted(
overall_class_stats.items(), key=lambda item: item[1])
}
freq = torch.tensor(list(overall_class_stats.values()))
freq = freq / torch.sum(freq)
freq = 1 - freq
freq = torch.softmax(freq / temperature, dim=-1)
return list(overall_class_stats.keys()), freq.numpy()
def get_crop_bbox(img_size, crop_size):
"""Randomly get a crop bounding box."""
assert len(img_size) == len(crop_size)
assert len(img_size) == 2
margin_h = max(img_size[0] - crop_size[0], 0)
margin_w = max(img_size[1] - crop_size[1], 0)
offset_h = np.random.randint(0, margin_h + 1)
offset_w = np.random.randint(0, margin_w + 1)
crop_y1, crop_y2 = offset_h, offset_h + crop_size[0]
crop_x1, crop_x2 = offset_w, offset_w + crop_size[1]
return crop_y1, crop_y2, crop_x1, crop_x2
@DATASETS.register_module()
class UDADatasetDual(CustomDatasetDual):
def __init__(self,
pipeline,
source,
target,
img_dir_source,
img_dir_target,
img_suffix_source='.jpg',
img_suffix_target='.jpg',
ann_dir_source=None,
ann_dir_target=None,
seg_map_suffix_source='.png',
seg_map_suffix_target='.png',
split_source=None,
split_target=None,
data_root_source=None,
data_root_target=None,
test_mode=False,
ignore_index=255,
crop_pseudo_margins_target=None,
valid_mask_size_target=None,
reduce_zero_label=False,
classes=None,
palette=None,
sync_crop_size=None,
rare_class_sampling=None):
if crop_pseudo_margins_target is not None:
assert pipeline[-1]['type'] == 'Collect'
pipeline[-1]['keys'][-1].append('valid_pseudo_mask')
super(UDADatasetDual, self).__init__(pipeline=pipeline,
img_dir_source=img_dir_source,
img_dir_target=img_dir_target,
img_suffix_source=img_suffix_source,
img_suffix_target=img_suffix_target,
ann_dir_source=ann_dir_source,
ann_dir_target=ann_dir_target,
seg_map_suffix_source=seg_map_suffix_source,
seg_map_suffix_target=seg_map_suffix_target,
split_source=split_source,
split_target=split_target,
data_root_source=data_root_source,
data_root_target=data_root_target,
test_mode=test_mode,
ignore_index=ignore_index,
crop_pseudo_margins_target=crop_pseudo_margins_target,
valid_mask_size_target=valid_mask_size_target,
reduce_zero_label=reduce_zero_label,
classes=classes,
palette=palette)
self.source = source
self.target = target
self.sync_crop_size = sync_crop_size
rcs_cfg = rare_class_sampling
self.rcs_enabled = rcs_cfg is not None
if self.rcs_enabled:
self.rcs_class_temp = rcs_cfg['class_temp']
self.rcs_min_crop_ratio = rcs_cfg['min_crop_ratio']
self.rcs_min_pixels = rcs_cfg['min_pixels']
self.rcs_classes, self.rcs_classprob = get_rcs_class_probs(
data_root_source, self.rcs_class_temp)
mmcv.print_log(f'RCS Classes: {self.rcs_classes}', 'mmseg')
mmcv.print_log(f'RCS ClassProb: {self.rcs_classprob}', 'mmseg')
with open(osp.join(data_root_source, 'samples_with_class.json'), 'r') as of:
samples_with_class_and_n = json.load(of)
samples_with_class_and_n = {
int(k): v
for k, v in samples_with_class_and_n.items()
if int(k) in self.rcs_classes
}
self.samples_with_class = {}
for c in self.rcs_classes:
self.samples_with_class[c] = []
for file, pixels in samples_with_class_and_n[c]:
if pixels > self.rcs_min_pixels:
self.samples_with_class[c].append(file.split('/')[-1])
assert len(self.samples_with_class[c]) > 0
self.file_to_idx = {}
for i, dic in enumerate(self.img_infos_source):
file = dic['ann']['seg_map']
if self.source == 'Cityscapes' or self.source == 'ACDCref':
file = file.split('/')[-1]
self.file_to_idx[file] = i
def pre_pipeline(self, results):
super(UDADatasetDual, self).pre_pipeline(results)
if self.crop_pseudo_margins_target is not None:
results['target']['valid_pseudo_mask'] = np.ones(
self.valid_mask_size_target, dtype=np.uint8)
# Don't trust pseudo-labels in regions with potential
# rectification artifacts. This can lead to a pseudo-label
# drift from sky towards building or traffic light.
if self.crop_pseudo_margins_target[0] > 0:
results['target']['valid_pseudo_mask'][:self.crop_pseudo_margins_target[0], :] = 0
# Here, the if statement is absolutely necessary
if self.crop_pseudo_margins_target[1] > 0:
results['target']['valid_pseudo_mask'][-self.crop_pseudo_margins_target[1]:, :] = 0
if self.crop_pseudo_margins_target[2] > 0:
results['target']['valid_pseudo_mask'][:, :self.crop_pseudo_margins_target[2]] = 0
# Here, the if statement is absolutely necessary
if self.crop_pseudo_margins_target[3] > 0:
results['target']['valid_pseudo_mask'][:, -self.crop_pseudo_margins_target[3]:] = 0
results['target']['seg_fields'].append('valid_pseudo_mask')
def synchronized_crop(self, s1, s2):
if self.sync_crop_size is None:
return s1, s2
orig_crop_size = s1['img'].data.shape[1:]
crop_y1, crop_y2, crop_x1, crop_x2 = get_crop_bbox(
orig_crop_size, self.sync_crop_size)
for i, s in enumerate([s1, s2]):
for key in ['img', 'img_stylized', 'gt_semantic_seg', 'valid_pseudo_mask']:
if key not in s:
continue
s[key] = DC(
s[key].data[:, crop_y1:crop_y2, crop_x1:crop_x2],
stack=s[key]._stack)
return s1, s2
def get_rare_class_sample(self):
c = np.random.choice(self.rcs_classes, p=self.rcs_classprob)
f1 = np.random.choice(self.samples_with_class[c])
i1 = self.file_to_idx[f1]
i2 = np.random.choice(range(len(self.img_infos_target)))
idx = i1 * len(self.img_infos_target) + i2
results = super().__getitem__(idx)
s1 = results['source']
if self.rcs_min_crop_ratio > 0:
for j in range(10):
n_class = torch.sum(s1['gt_semantic_seg'].data == c)
# mmcv.print_log(f'{j}: {n_class}', 'mmseg')
if n_class > self.rcs_min_pixels * self.rcs_min_crop_ratio:
break
# Sample a new random crop from source image i1.
# Please note, that super().__getitem__(idx) applies the
# preprocessing pipeline to the loaded image, which includes
# RandomCrop, and results in a new crop of the image.
results = super().__getitem__(idx)
s1 = results['source']
s2 = results['target']
# Before synchronized_crop(), s1 and s2 are cropped independently from
# the entire image when calling results = super().__getitem__(idx).
# This corresponds to the original implementation in DACS and DAFormer.
# However, in both papers only large crops were used.
# In some experiments of the HRDA paper, smaller crop sizes are
# necessary. We found that independent small crops do not work
# well with ClassMix (see dacs.py) as the content layout does not
# match. Therefore, we use synchronized cropping, where the same
# subcrop region is applied to s1 and s2.
s1, s2 = self.synchronized_crop(s1, s2)
out = {
**s1, 'target_img_metas': s2['img_metas'],
'target_img': s2['img'], 'target_img_stylized': s2['img_stylized']
}
if 'valid_pseudo_mask' in s2:
out['valid_pseudo_mask'] = s2['valid_pseudo_mask']
return out
def __getitem__(self, idx):
if self.rcs_enabled:
return self.get_rare_class_sample()
else:
results = super().__getitem__(idx)
s1 = results['source']
s2 = results['target']
s1, s2 = self.synchronized_crop(s1, s2)
out = {
**s1, 'target_img_metas': s2['img_metas'],
'target_img': s2['img'], 'target_img_stylized': s2['img_stylized']
}
if 'valid_pseudo_mask' in s2:
out['valid_pseudo_mask'] = s2['valid_pseudo_mask']
return out