-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathmain.c
661 lines (568 loc) · 18.2 KB
/
main.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
/*
* Copyright (c) 2019 Oracle and/or its affiliates. All rights reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#include <defs.h>
#include <types.h>
#include <boot.h>
#include <pci.h>
#include <iommu.h>
#include "tpmlib/tpm.h"
#include "tpmlib/tpm2_constants.h"
#include <sha1sum.h>
#include <sha256.h>
#include <linux-bootparams.h>
#include <event_log.h>
#include <multiboot2.h>
#include <tags.h>
u32 boot_protocol;
lz_info_t __section(".lz_info") __used lz_info = {
.uuid = {
0x78, 0xf1, 0x26, 0x8e, 0x04, 0x92, 0x11, 0xe9,
0x83, 0x2a, 0xc8, 0x5b, 0x76, 0xc4, 0xcc, 0x02,
},
.version = 0,
.msb_key_algo = 0x14,
.msb_key_hash = { 0 },
};
#ifdef DEBUG
static void print_char(char c)
{
while ( !(inb(0x3f8 + 5) & 0x20) )
;
outb(c, 0x3f8);
}
static void print(const char * txt) {
while (*txt != '\0') {
if (*txt == '\n')
print_char('\r');
print_char(*txt++);
}
}
static void print_p(const void * _p) {
char tmp[sizeof(void*)*2 + 5] = "0x";
int i;
size_t p = (size_t)_p;
for (i=0; i<sizeof(void*); i++) {
if ((p & 0xf) >= 10)
tmp[sizeof(void*)*2 + 1 - 2*i] = (p & 0xf) + 'a' - 10;
else
tmp[sizeof(void*)*2 + 1 - 2*i] = (p & 0xf) + '0';
p >>= 4;
if ((p & 0xf) >= 10)
tmp[sizeof(void*)*2 - 2*i] = (p & 0xf) + 'a' - 10;
else
tmp[sizeof(void*)*2 - 2*i] = (p & 0xf) + '0';
p >>= 4;
}
tmp[sizeof(void*)*2 + 2] = ':';
tmp[sizeof(void*)*2 + 3] = ' ';
tmp[sizeof(void*)*2 + 4] = '\0';
print(tmp);
}
static void print_b(char p) {
char tmp[4];
if ((p & 0xf) >= 10)
tmp[1] = (p & 0xf) + 'a' - 10;
else
tmp[1] = (p & 0xf) + '0';
p >>= 4;
if ((p & 0xf) >= 10)
tmp[0] = (p & 0xf) + 'a' - 10;
else
tmp[0] = (p & 0xf) + '0';
tmp[2] = ' ';
tmp[3] = '\0';
print(tmp);
}
static inline int isprint(int c)
{
return c >= ' ' && c <= '~';
}
static void hexdump(const void *memory, size_t length)
{
int i;
u8 *line;
int all_zero = 0;
int all_one = 0;
size_t num_bytes;
for (i = 0; i < length; i += 16) {
int j;
num_bytes = 16;
line = ((u8 *)memory) + i;
all_zero++;
all_one++;
for (j = 0; j < num_bytes; j++) {
if (line[j] != 0) {
all_zero = 0;
break;
}
}
for (j = 0; j < num_bytes; j++) {
if (line[j] != 0xff) {
all_one = 0;
break;
}
}
if ((all_zero < 2) && (all_one < 2)) {
print_p(memory + i);
for (j = 0; j < num_bytes; j++)
print_b(line[j]);
for (; j < 16; j++)
print(" ");
print(" ");
for (j = 0; j < num_bytes; j++)
isprint(line[j]) ? print_char(line[j]) : print_char('.');
print("\n");
} else if ((all_zero == 2) || (all_one == 2)) {
print("...\n");
}
}
}
#else
static void print(const char * unused) { }
static void print_p(const void * unused) { }
static void hexdump(const void *unused, size_t unused2) { }
#endif
static void extend_pcr(struct tpm *tpm, void *data, u32 size, u32 pcr, char *ev)
{
u8 hash[SHA1_DIGEST_SIZE];
sha1sum(hash, data, size);
print("shasum calculated:\n");
hexdump(hash, SHA1_DIGEST_SIZE);
tpm_extend_pcr(tpm, pcr, TPM_ALG_SHA1, hash);
if (tpm->family == TPM12) {
log_event_tpm12(pcr, hash, ev);
} else if (tpm->family == TPM20) {
u8 sha256_hash[SHA256_DIGEST_SIZE];
sha256sum(sha256_hash, data, size);
print("shasum calculated:\n");
hexdump(sha256_hash, SHA256_DIGEST_SIZE);
tpm_extend_pcr(tpm, pcr, TPM_ALG_SHA256, &sha256_hash[0]);
log_event_tpm20(pcr, hash, sha256_hash, ev);
}
print("PCR extended\n");
}
/*
* Checks if ptr points to *uncompressed* part of the kernel
*/
static inline void *is_in_kernel(struct boot_params *bp, void *ptr)
{
if (ptr < _p(bp->code32_start) ||
ptr >= _p(bp->code32_start + (bp->syssize << 4)) ||
(ptr >= _p(bp->code32_start + bp->payload_offset) &&
ptr < _p(bp->code32_start + bp->payload_offset + bp->payload_length)))
return NULL;
return ptr;
}
static inline struct kernel_info *get_kernel_info(struct boot_params *bp)
{
return is_in_kernel(bp, _p(bp->code32_start + bp->kern_info_offset));
}
static inline struct mle_header *get_mle_hdr(struct boot_params *bp,
struct kernel_info *ki)
{
return is_in_kernel(bp, _p(bp->code32_start + ki->mle_header_offset));
}
static inline void *get_kernel_entry(struct boot_params *bp,
struct mle_header *mle_hdr)
{
return is_in_kernel(bp, _p(bp->code32_start + mle_hdr->sl_stub_entry));
}
/*
* Even though die() has both __attribute__((noreturn)) and unreachable(),
* Clang still complains if it isn't repeated here.
*/
static void __attribute__((noreturn)) reboot(void)
{
print("Rebooting now...");
die();
unreachable();
}
#ifdef TEST_DMA
static void do_dma(void)
{
/* Set up the DMA channel so we can use it. This tells the DMA */
/* that we're going to be using this channel. (It's masked) */
outb(0x0a, 0x05);
/* Clear any data transfers that are currently executing. */
outb(0x0c, 0x00);
/* Send the specified mode to the DMA. */
outb(0x0b, 0x45);
/* Send the offset address. The first byte is the low base offset, the */
/* second byte is the high offset. */
//~ outportb(AddrPort[DMA_channel], LOW_BYTE(blk->offset));
//~ outportb(AddrPort[DMA_channel], HI_BYTE(blk->offset));
outb(0x02, 0x00);
outb(0x02, 0x00);
/* Send the physical page that the data lies on. */
//~ outportb(PagePort[DMA_channel], blk->page);
outb(0x83, 0x00);
/* Send the length of the data. Again, low byte first. */
//~ outportb(CountPort[DMA_channel], LOW_BYTE(blk->length));
//~ outportb(CountPort[DMA_channel], HI_BYTE(blk->length));
outb(0x03, 0x20);
outb(0x03, 0x00);
/* Ok, we're done. Enable the DMA channel (clear the mask). */
//~ outportb(MaskReg[DMA_channel], DMA_channel);
outb(0x0a, 0x01);
// "Device" says that it is ready to send data. As there is no device
// physically sending the data, this reads idle bus lines.
outb(0x09, 0x05);
}
#endif
/*
* Function return ABI magic:
*
* By returning a simple object of two pointers, the SYSV ABI splits it across
* %rax and %rdx rather than spilling it to the stack. This is far more
* convenient for our asm caller to deal with.
*/
typedef struct {
void *pm_kernel_entry; /* %eax */
void *zero_page; /* %edx */
} asm_return_t;
static asm_return_t lz_linux(struct tpm *tpm, struct lz_tag_boot_linux *lz_tag)
{
struct boot_params *bp;
struct kernel_info *ki;
struct mle_header *mle_header;
void *pm_kernel_entry;
u32 iommu_cap, dev;
volatile u64 iommu_done __attribute__ ((aligned (8))) = 0;
/*
* Now in 64b mode, paging is setup. This is the launching point. We can
* now do what we want. First order of business is to setup IOMMU to cover
* all memory. At the end, trampoline to the PM entry point which will
* include the Secure Launch stub.
*/
/* The Zero Page with the boot_params and legacy header */
bp = _p(lz_tag->zero_page);
#ifdef TEST_DMA
memset(_p(1), 0xcc, 0x20); //_p(0) gives a null-pointer error
print("before DMA:\n");
hexdump(_p(0), 0x30);
do_dma();
/* Important line, it delays hexdump */
print("after DMA: \n");
hexdump(_p(0), 0x30);
memset(_p(1), 0xcc, 0x20);
print("before DMA2\n");
hexdump(_p(0), 0x30);
do_dma();
/* Important line, it delays hexdump */
print("after DMA2 \n");
hexdump(_p(0), 0x30);
#endif
pci_init();
iommu_cap = iommu_locate();
/*
* SKINIT enables protection against DMA access from devices for SLB
* (whole 64K, not just the measured part). This ensures that no device
* can overwrite code or data of SL. Unfortunately, it also means that
* IOMMU, being a PCI device, also cannot read from this memory region.
* When IOMMU is trying to read a command from buffer located in SLB it
* receives COMMAND_HARDWARE_ERROR (master abort).
*
* Luckily, after that error it enters a fail-safe state in which all
* operations originating from devices are blocked. The IOMMU itself can
* still access the memory, so after the SLB protection is lifted, it can
* try to read the data located inside SLB and set up a proper protection.
*
* TODO: split iommu_load_device_table() into two parts, before and after
* DEV disabling
*
* TODO2: check if IOMMU always blocks the devices, even when it was
* configured before SKINIT
*/
if (iommu_cap == 0 || iommu_load_device_table(iommu_cap, &iommu_done)) {
if (iommu_cap)
print("IOMMU disabled by a firmware, please check your settings\n");
print("Couldn't set up IOMMU, DMA attacks possible!\n");
/* Tell TB stub that there is no IOMMU */
bp->tb_dev_map = 0;
} else {
/* Turn off SLB protection, try again */
dev = dev_locate();
print("Disabling SLB protection\n");
if (dev) {
/* Older families with remains of DEV */
dev_disable_sl(dev);
} else {
/* Fam 17h uses different DMA protection control register */
u32 sldev;
pci_read(0, 0, PCI_DEVFN(0x18, 0), 0x384, 4, &sldev);
pci_write(0, 0, PCI_DEVFN(0x18, 0), 0x384, 4, sldev & ~1);
}
#ifdef TEST_DMA
memset(_p(1), 0xcc, 0x20);
print("before DMA:\n");
hexdump(_p(0), 0x30);
do_dma();
/* Important line, it delays hexdump */
print("after DMA: \n");
hexdump(_p(0), 0x30);
/* Important line, it delays hexdump */
print("and again\n");
hexdump(_p(0), 0x30);
memset(_p(1), 0xcc, 0x20);
print("before DMA2\n");
hexdump(_p(0), 0x30);
do_dma();
/* Important line, it delays hexdump */
print("after DMA2 \n");
hexdump(_p(0), 0x30);
/* Important line, it delays hexdump */
print("and again2\n");
hexdump(_p(0), 0x30);
#endif
iommu_load_device_table(iommu_cap, &iommu_done);
print("Flushing IOMMU cache");
while (!iommu_done) {
print(".");
}
print("\nIOMMU set\n");
/* Set the Device Table address for the TB stub to use */
bp->tb_dev_map = _u(device_table);
}
#ifdef TEST_DMA
memset(_p(1), 0xcc, 0x20);
print("before DMA:\n");
hexdump(_p(0), 0x30);
do_dma();
/* Important line, it delays hexdump */
print("after DMA: \n");
hexdump(_p(0), 0x30);
/* Important line, it delays hexdump */
print("and again\n");
hexdump(_p(0), 0x30);
memset(_p(1), 0xcc, 0x20);
print("before DMA2\n");
hexdump(_p(0), 0x30);
do_dma();
/* Important line, it delays hexdump */
print("after DMA2 \n");
hexdump(_p(0), 0x30);
/* Important line, it delays hexdump */
print("and again2\n");
hexdump(_p(0), 0x30);
#endif
print("\ncode32_start ");
print_p(_p(bp->code32_start));
if (bp->version < 0x020f
|| (ki = get_kernel_info(bp)) == NULL
|| ki->header != KERNEL_INFO_HEADER
|| (mle_header = get_mle_hdr(bp, ki)) == NULL
|| mle_header->uuid[0] != MLE_UUID0
|| mle_header->uuid[1] != MLE_UUID1
|| mle_header->uuid[2] != MLE_UUID2
|| mle_header->uuid[3] != MLE_UUID3) {
print("\nKernel is too old or MLE header not present.\n");
reboot();
}
print("\nmle_header\n");
hexdump(mle_header, sizeof(struct mle_header));
pm_kernel_entry = get_kernel_entry(bp, mle_header);
if (pm_kernel_entry == NULL) {
print("\nBad kernel entry in MLE header.\n");
reboot();
}
/* extend TB Loader code segment into PCR17 */
extend_pcr(tpm, _p(bp->code32_start), bp->syssize << 4, 17,
"Measured Kernel into PCR17");
tpm_relinquish_locality(tpm);
free_tpm(tpm);
/* End of the line, off to the protected mode entry into the kernel */
print("pm_kernel_entry:\n");
hexdump(pm_kernel_entry, 0x100);
print("zero_page:\n");
hexdump(bp, 0x280);
print("lz_base:\n");
hexdump(_start, 0x100);
print("device_table:\n");
hexdump(device_table, 0x100);
print("command_buf:\n");
hexdump(command_buf, 0x1000);
print("event_log:\n");
hexdump(event_log, 0x1000);
print("lz_main() is about to exit\n");
return (asm_return_t){ pm_kernel_entry, bp };
}
static asm_return_t lz_multiboot2(struct tpm *tpm, struct lz_tag_boot_mb2 *lz_tag)
{
void *kernel_entry;
u32 kernel_size, mbi_len;
struct multiboot_tag *tag;
int i;
/* This is MBI header, not a tag, but their structures are similar enough.
* Note that 'size' offsets are reversed in those two! */
tag = _p(lz_tag->mbi);
/* lz_tag->kernel_size is either passed size of kernel from bootloader
* or 0 */
kernel_size = lz_tag->kernel_size;
kernel_entry = _p(lz_tag->kernel_entry);
/* Extend PCR18 with MBI structure's hash; this includes all cmdlines.
* Use 'type' and not 'size', as their offsets are swapped in the header! */
mbi_len = tag->type;
extend_pcr(tpm, &tag, mbi_len, 18, "Measured MBI into PCR18");
tag++;
while (tag->type) {
if (kernel_entry && kernel_size)
break;
/* If the entry point wasn't passed by a bootloader, we can only assume
* that it starts at the kernel base address (true at least for Xen) */
if (!kernel_entry && tag->type == MULTIBOOT_TAG_TYPE_LOAD_BASE_ADDR) {
struct multiboot_tag_load_base_addr *ba = (void *)tag;
kernel_entry = _p(ba->load_base_addr);
print("kernel_entry ");
print_p(kernel_entry);
print("\n");
}
/* This assumes that ELF has only one PROGBITS section, and that section
* is the first one (i.e. it is loaded at load_base_addr). It is true
* for Xen, but may not always the case.
*
* Also, GRUB2 creates this tag after all module tags, so separate loop
* is needed for consistent order of PCR extension operations. */
if (!kernel_size && tag->type == MULTIBOOT_TAG_TYPE_ELF_SECTIONS) {
struct multiboot_tag_elf_sections *es_tag = (void *)tag;
for (i = 0; i < es_tag->num; i++) {
Elf32_Shdr *sh = (void *)&es_tag->sections[es_tag->entsize * i];
if (sh->sh_type == SHT_PROGBITS) {
kernel_size = sh->sh_size;
print("kernel_size ");
print_p(_p(kernel_size));
print("\n");
break;
}
}
}
tag = multiboot_next_tag(tag);
}
extend_pcr(tpm, kernel_entry, kernel_size, 17,
"Measured Kernel into PCR17");
tag = _p(lz_tag->mbi);
tag++;
while (tag->type) {
if (tag->type == MULTIBOOT_TAG_TYPE_MODULE) {
struct multiboot_tag_module *mod = (void *)tag;
print("Module '");
print(mod->cmdline);
print("' [");
print_p(_p(mod->mod_start));
print_p(_p(mod->mod_end));
print("]\n");
extend_pcr(tpm, _p(mod->mod_start), mod->mod_end - mod->mod_start,
17, mod->cmdline);
}
tag = multiboot_next_tag(tag);
}
/* Safety checks */
if (tag->size != 8
|| _p(multiboot_next_tag(tag)) > _p(lz_tag->mbi) + mbi_len) {
print("MBI safety checks failed\n");
reboot();
}
boot_protocol = MULTIBOOT2;
return (asm_return_t){ kernel_entry, _p(lz_tag->mbi) };
}
asm_return_t lz_main(void)
{
asm_return_t ret;
struct tpm *tpm;
struct lz_tag_hdr *t = (struct lz_tag_hdr*) &bootloader_data;
/*
* Now in 64b mode, paging is setup. This is the launching point. We can
* now do what we want. First order of business is to setup
* DEV to cover memory from the start of bzImage to the end of the LZ
* "kernel". At the end, trampoline to the PM entry point which will
* include the Secure Launch stub.
*/
pci_init();
if (t->type != LZ_TAG_TAGS_SIZE
|| t->len != sizeof(struct lz_tag_tags_size)
|| end_of_tags() > _p(_start + SLB_SIZE)
|| (t = next_of_type(t, LZ_TAG_END)) == NULL
|| _p(t) + t->len != end_of_tags()) {
print("Bad bootloader data format\n");
reboot();
}
/*
* TODO Note these functions can fail but there is no clear way to
* report the error unless SKINIT has some resource to do this. For
* now, if an error is returned, this code will most likely just crash.
*/
tpm = enable_tpm();
tpm_request_locality(tpm, 2);
event_log_init(tpm);
/* Now that we have TPM and event log, measure bootloader data */
extend_pcr(tpm, &bootloader_data, bootloader_data.size, 18,
"Measured bootloader data into PCR18");
t = next_of_class(&bootloader_data, LZ_TAG_BOOT_CLASS);
if (t == NULL || next_of_class(t, LZ_TAG_BOOT_CLASS) != NULL) {
print("No boot tag or multiple boot tags\n");
reboot();
}
switch(t->type) {
case LZ_TAG_BOOT_LINUX:
ret = lz_linux(tpm, (struct lz_tag_boot_linux *)t);
break;
case LZ_TAG_BOOT_MB2:
ret = lz_multiboot2(tpm, (struct lz_tag_boot_mb2 *)t);
break;
default:
print("Unknown kernel boot protocol\n");
reboot();
}
tpm_relinquish_locality(tpm);
free_tpm(tpm);
/* End of the line, off to the protected mode entry into the kernel */
print("pm_kernel_entry:\n");
hexdump(ret.pm_kernel_entry, 0x100);
print("zero_page:\n");
hexdump(ret.zero_page, 0x280);
print("lz_base:\n");
hexdump(_start, 0x100);
print("bootloader_data:\n");
hexdump(&bootloader_data, bootloader_data.size);
t = next_of_type(&bootloader_data, LZ_TAG_EVENT_LOG);
if (t != NULL) {
print("TPM event log:\n");
hexdump(_p(((struct lz_tag_evtlog *)t)->address),
((struct lz_tag_evtlog *)t)->size);
}
if (lz_stack_canary != STACK_CANARY) {
print("Stack is too small, possible corruption\n");
reboot();
}
print("lz_main() is about to exit\n");
return ret;
}
static void __maybe_unused build_assertions(void)
{
struct boot_params b;
struct kernel_info k;
BUILD_BUG_ON(offsetof(typeof(b), tb_dev_map) != 0x0d8);
BUILD_BUG_ON(offsetof(typeof(b), syssize) != 0x1f4);
BUILD_BUG_ON(offsetof(typeof(b), version) != 0x206);
BUILD_BUG_ON(offsetof(typeof(b), code32_start) != 0x214);
BUILD_BUG_ON(offsetof(typeof(b), cmd_line_ptr) != 0x228);
BUILD_BUG_ON(offsetof(typeof(b), cmdline_size) != 0x238);
BUILD_BUG_ON(offsetof(typeof(b), payload_offset) != 0x248);
BUILD_BUG_ON(offsetof(typeof(b), payload_length) != 0x24c);
BUILD_BUG_ON(offsetof(typeof(b), kern_info_offset) != 0x268);
BUILD_BUG_ON(offsetof(typeof(k), mle_header_offset) != 0x010);
}