-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
33 lines (25 loc) · 1.83 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
# code to train the network
# Shivan Bhatt 18249
import sys
sys.path.insert(0, r'C:\studym\sem7\AI\t69') #adding folder path
from cgan import CGAN #importing necessary modules
from discriminative_network import DiscriminativeNetwork
from generative_network import GenerativeNetwork
from data_generator import SentinelDataGenerator
# os.environ['CUDA_VISIBLE_DEVICES'] = '-1' #uncomment to not use GPU acceleration
if __name__ == '__main__':
satellite_image_shape = (256, 256, 4) #set the size for image, 4 channels for rgb and infrared
mask_shape = (256, 256, 1) #set size for mask
output_channels = satellite_image_shape[2]
init_filters = 64 #no of channels in the output of conv layer
data_generator = SentinelDataGenerator('bdot', satellite_image_shape=(4, 256, 256),
landcover_mask_shape=(1, 256, 256), feature_range=(-1, 1)) #preparing the data, change the satellite images to raster data
dn = DiscriminativeNetwork()
dn_model = dn.build(init_filters=init_filters, input_shape=satellite_image_shape, condition_shape=mask_shape, #building the discriminative network
kernel_size=(3, 3))
gn = GenerativeNetwork()
gn_model = gn.build(init_filters=init_filters, input_shape=mask_shape, output_channels=output_channels, #building the generative network
compile=False, dropout_rate=0.5, kernel_size=(7, 7))
cgan = CGAN(data_generator, dn_model, gn_model, input_shape=satellite_image_shape, condition_shape=mask_shape)
history = cgan.fit(epochs=200, batch=50) #fitting the cgan model
print('Sentinel CGAN has been fitted')