-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathh2rbox_v2p_r50_fpn_1x_star_le90.py
120 lines (113 loc) · 3.68 KB
/
h2rbox_v2p_r50_fpn_1x_star_le90.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
_base_ = [
'../_base_/datasets/star.py', '../_base_/schedules/schedule_1x.py',
'../_base_/default_runtime.py'
]
angle_version = 'le90'
# model settings
model = dict(
type='H2RBoxV2PDetectorCrop',
backbone=dict(
type='ResNet',
depth=50,
num_stages=4,
out_indices=(0, 1, 2, 3),
frozen_stages=1,
zero_init_residual=False,
norm_cfg=dict(type='BN', requires_grad=True),
norm_eval=True,
style='pytorch',
init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50')),
neck=dict(
type='FPN',
in_channels=[256, 512, 1024, 2048],
out_channels=256,
start_level=1,
add_extra_convs='on_output', # use P5
num_outs=5,
relu_before_extra_convs=True),
bbox_head=dict(
type='H2RBoxV2PHead',
num_classes=48,
in_channels=256,
stacked_convs=4,
feat_channels=256,
strides=[8, 16, 32, 64, 128],
center_sampling=True,
center_sample_radius=1.5,
norm_on_bbox=True,
centerness_on_reg=True,
square_cls=[4, 44],
# resize_cls=[1],
scale_angle=False,
bbox_coder=dict(
type='DistanceAnglePointCoder', angle_version=angle_version),
loss_cls=dict(
type='FocalLoss',
use_sigmoid=True,
gamma=2.0,
alpha=0.25,
loss_weight=1.0),
loss_bbox=dict(type='IoULoss', loss_weight=1.0),
loss_centerness=dict(
type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
loss_ss_symmetry=dict(
type='SmoothL1Loss', loss_weight=0.2, beta=0.1)),
# training and testing settings
train_cfg=None,
test_cfg=dict(
nms_pre=2000,
min_bbox_size=0,
score_thr=0.05,
nms=dict(iou_thr=0.1),
max_per_img=2000))
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations', with_bbox=True),
dict(type='RResize', img_scale=(1024, 1024)),
dict(
type='RRandomFlip',
flip_ratio=[0.25, 0.25, 0.25],
direction=['horizontal', 'vertical', 'diagonal'],
version=angle_version),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size_divisor=32),
dict(type='DefaultFormatBundle'),
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels'])
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='MultiScaleFlipAug',
scale_factor=1.0,
flip=False,
transforms=[
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size_divisor=64),
dict(type='DefaultFormatBundle'),
dict(type='Collect', keys=['img'])
])
]
data_root = 'data/STAR/'
data = dict(
train=dict(type='STARWSOODDataset', pipeline=train_pipeline,
ann_file=data_root + 'train/annfiles/',
img_prefix=data_root + 'train/images/',
version=angle_version),
val=dict(type='STARWSOODDataset', pipeline=test_pipeline,
ann_file=data_root + 'test/annfiles/',
img_prefix=data_root + 'test/images/',
version=angle_version),
test=dict(type='STARWSOODDataset', pipeline=test_pipeline,
ann_file=data_root + 'test/annfiles/',
img_prefix=data_root + 'test/images/',
version=angle_version))
optimizer = dict(
_delete_=True,
type='AdamW',
lr=0.0001,
betas=(0.9, 0.999),
weight_decay=0.05)
checkpoint_config = dict(interval=1, max_keep_ckpts=1)
evaluation = dict(interval=6, metric='mAP')