-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathidm.m
209 lines (138 loc) · 4.98 KB
/
idm.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
(* ::Package:: *)
(*Quit[];*)
If[$InputFileName=="",
SetDirectory[NotebookDirectory[]],
SetDirectory[DirectoryName[$InputFileName]]
];
(*Put this if you want to create multiple model-files with the same kernel*)
$GroupMathMultipleModels=True;
$LoadGroupMath=True;
Check[
Get["WallGoMatrix`"],
Message[Get::noopen, "WallGoMatrix` at "<>ToString[$UserBaseDirectory]<>"/Applications"];
Abort[];
]
(* ::Chapter:: *)
(*Inert doublet model*)
(*See 2211.13142 for implementation details -- note our different normalization in the
quartic couplings*)
(* ::Section:: *)
(*Model*)
Group={"SU3","SU2"};
RepAdjoint={{1,1},{2},0};
HiggsDoublet1={{{0,0},{1}},"C"};
HiggsDoublet2={{{0,0},{1}},"C"};
RepScalar={HiggsDoublet1,HiggsDoublet2};
CouplingName={g3,gw};
Rep1={{{1,0},{1}},"L"};
Rep2={{{1,0},{0}},"R"};
Rep3={{{1,0},{0}},"R"};
Rep4={{{0,0},{1}},"L"};
Rep5={{{0,0},{0}},"R"};
RepFermion1Gen={Rep1,Rep2,Rep3,Rep4,Rep5};
(* ::Text:: *)
(*The input for the gauge interactions to DRalgo are then given by*)
RepFermion3Gen={RepFermion1Gen,RepFermion1Gen,RepFermion1Gen}//Flatten[#,1]&;
(* ::Text:: *)
(*The first element is the vector self-interaction matrix:*)
{gvvv,gvff,gvss,\[Lambda]1,\[Lambda]3,\[Lambda]4,\[Mu]ij,\[Mu]IJ,\[Mu]IJC,Ysff,YsffC}=AllocateTensors[Group,RepAdjoint,CouplingName,RepFermion3Gen,RepScalar];
InputInv={{1,1},{True,False}};
MassTerm1=CreateInvariant[Group,RepScalar,InputInv]//Simplify//FullSimplify;
InputInv={{2,2},{True,False}};
MassTerm2=CreateInvariant[Group,RepScalar,InputInv]//Simplify//FullSimplify;
InputInv={{1,2},{True,False}};
MassTerm3=CreateInvariant[Group,RepScalar,InputInv]//Simplify//FullSimplify;
InputInv={{2,1},{True,False}};
MassTerm4=CreateInvariant[Group,RepScalar,InputInv]//Simplify//FullSimplify;
VMass=(
+m1*MassTerm1
+m2*MassTerm2
);
\[Mu]ij=GradMass[VMass[[1]]]//Simplify//SparseArray;
QuarticTerm1=MassTerm1[[1]]^2;
QuarticTerm2=MassTerm2[[1]]^2;
QuarticTerm3=MassTerm1[[1]]*MassTerm2[[1]];
QuarticTerm4=MassTerm3[[1]]*MassTerm4[[1]];
QuarticTerm5=(MassTerm3[[1]]^2+MassTerm4[[1]]^2)//Simplify;
VQuartic=(
+lam1H*QuarticTerm1
+lam2H*QuarticTerm2
+lam3H*QuarticTerm3
+lam4H*QuarticTerm4
+lam5H/2*QuarticTerm5
);
\[Lambda]4=GradQuartic[VQuartic];
InputInv={{1,1,2},{False,False,True}};
YukawaDoublet1=CreateInvariantYukawa[Group,RepScalar,RepFermion3Gen,InputInv]//Simplify;
Ysff=-GradYukawa[yt1*YukawaDoublet1[[1]]];
YsffC=SparseArray[Simplify[Conjugate[Ysff]//Normal,Assumptions->{yt1>0}]];
ImportModel[Group,gvvv,gvff,gvss,\[Lambda]1,\[Lambda]3,\[Lambda]4,\[Mu]ij,\[Mu]IJ,\[Mu]IJC,Ysff,YsffC,Verbose->False];
(* ::Section:: *)
(*SM quarks + gauge bosons + leptons*)
(* ::Subsection:: *)
(*SymmetryBreaking*)
vev={0,v,0,0,0,0,0,0};
SymmetryBreaking[vev,VevDependentCouplings->True]
(* ::Subsection:: *)
(*UserInput*)
(*
In DRalgo fermions are Weyl.
So to create one Dirac we need
one left-handed and
one right-handed fermoon
*)
(*left-handed top-quark*)
ReptL=CreateParticle[{{1,1}},"F"];
(*right-handed top-quark*)
ReptR=CreateParticle[{{2,1}},"F"];
(*light quarks*)
RepLightQ = CreateParticle[{{1,2},3,6,7,8,11,12,13},"F"];
(*left-handed leptons*)
RepLepL = CreateParticle[{4,9,14},"F"];
(*right-handed leptons -- these don't contribute*)
RepLepR = CreateParticle[{5,10,15},"F"];
(*Vector bosons*)
RepGluon=CreateParticle[{1},"V"];
(*We are approximating the W and the Z as the same particle*)
RepW=CreateParticle[{{2,1}},"V"];
(*Higgs*)
RepHiggs = CreateParticle[{1},"S"];
RepH=CreateParticle[{{2,2}},"S"]; (*CP-even inert scalar*)
RepA=CreateParticle[{{2,3},{2,1}},"S"]; (*CP-odd inert and charged scalars.
Note that when lambda4 = lambda5, they have the same mass*)
(*
These particles do not necessarily have to be out of equilibrium
the remainin particle content is set as light
*)
ParticleList={ReptL,ReptR,RepLightQ,RepLepL,RepLepR,RepGluon,RepW, RepHiggs,RepH, RepA};
(*Defining various masses and couplings*)
VectorMass=Join[
Table[mg2,{i,1,RepGluon[[1]]//Length}],
Table[mw2,{i,1,RepW[[1]]//Length}]
];
(*First we give all the leptons the same mass*)
FermionMass=Table[mq2,{i,1,Length[gvff[[1]]]}];
(*Now we replace the entries with the lefthanded lepton indices by the lepton mass*)
(*We don't care about the right-handed leptons, because they don't appear in the diagrams*)
FermionMass[[RepLepL[[1]]]]=ml2;
ScalarMass={mh2,mh2,mh2,mh2,mA2,mH2,mA2,mA2};
ParticleMasses={VectorMass,FermionMass,ScalarMass};
(*
up to the user to make sure that the same order is given in the python code
*)
UserMasses={mq2,ml2,mg2,mw2,mh2,mA2};
UserCouplings=Variables@Normal@{Ysff,gvss,gvff,gvvv,\[Lambda]4,\[Lambda]3,vev}//DeleteDuplicates
(*
output of matrix elements
*)
OutputFile="matrixElements.idm";
SetDirectory[NotebookDirectory[]];
ParticleName={"TopL","TopR","LightQuark","LepL","LepR","Gluon","W","Higgs","H","A"};
MatrixElements=ExportMatrixElements[
OutputFile,
ParticleList,
UserMasses,
UserCouplings,
ParticleName,
ParticleMasses,
{TruncateAtLeadingLog->True,Replacements->{lam1H->0,lam2H->0,lam4H->0,lam5H->0},Format->{"json","txt"}}];