|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "metadata": {}, |
| 6 | + "source": [ |
| 7 | + "# Track Tree - Example Data Generation\n", |
| 8 | + "\n", |
| 9 | + "----\n", |
| 10 | + "\n", |
| 11 | + "This generates some random example data to illustrate the \"track tree\" visualization. The values for the two measurement tracks are generated by a pink noise generator. The tree structure is also randomly generated (in a very awkward way that allows very little control). Have fun. " |
| 12 | + ] |
| 13 | + }, |
| 14 | + { |
| 15 | + "cell_type": "markdown", |
| 16 | + "metadata": {}, |
| 17 | + "source": [ |
| 18 | + "### Prep" |
| 19 | + ] |
| 20 | + }, |
| 21 | + { |
| 22 | + "cell_type": "code", |
| 23 | + "execution_count": 1, |
| 24 | + "metadata": { |
| 25 | + "collapsed": true |
| 26 | + }, |
| 27 | + "outputs": [], |
| 28 | + "source": [ |
| 29 | + "### Import modules\n", |
| 30 | + "from __future__ import division\n", |
| 31 | + "import os, sys\n", |
| 32 | + "import warnings\n", |
| 33 | + "import numpy as np\n", |
| 34 | + "import matplotlib.pyplot as plt" |
| 35 | + ] |
| 36 | + }, |
| 37 | + { |
| 38 | + "cell_type": "code", |
| 39 | + "execution_count": 2, |
| 40 | + "metadata": { |
| 41 | + "collapsed": true |
| 42 | + }, |
| 43 | + "outputs": [], |
| 44 | + "source": [ |
| 45 | + "### Seed random generator\n", |
| 46 | + "np.random.seed(5)" |
| 47 | + ] |
| 48 | + }, |
| 49 | + { |
| 50 | + "cell_type": "markdown", |
| 51 | + "metadata": {}, |
| 52 | + "source": [ |
| 53 | + "### Tree Generation" |
| 54 | + ] |
| 55 | + }, |
| 56 | + { |
| 57 | + "cell_type": "code", |
| 58 | + "execution_count": 3, |
| 59 | + "metadata": { |
| 60 | + "collapsed": true |
| 61 | + }, |
| 62 | + "outputs": [], |
| 63 | + "source": [ |
| 64 | + "### Function to generate two branches from a stem\n", |
| 65 | + "\n", |
| 66 | + "def make_branches(ID, IDs):\n", |
| 67 | + " \n", |
| 68 | + " # First branch\n", |
| 69 | + " new_ID_1 = IDs[-1] + 1\n", |
| 70 | + " tree[new_ID_1] = {'stem' : ID,\n", |
| 71 | + " 'branches' : '_none_'}\n", |
| 72 | + " IDs.append(new_ID_1)\n", |
| 73 | + " \n", |
| 74 | + " # Second branch\n", |
| 75 | + " new_ID_2 = IDs[-1] + 1\n", |
| 76 | + " tree[new_ID_2] = {'stem' : ID,\n", |
| 77 | + " 'branches' : '_none_'}\n", |
| 78 | + " IDs.append(new_ID_2)\n", |
| 79 | + " \n", |
| 80 | + " # Update stem\n", |
| 81 | + " tree[ID]['branches'] = [new_ID_1, new_ID_2]" |
| 82 | + ] |
| 83 | + }, |
| 84 | + { |
| 85 | + "cell_type": "code", |
| 86 | + "execution_count": 4, |
| 87 | + "metadata": { |
| 88 | + "collapsed": false |
| 89 | + }, |
| 90 | + "outputs": [], |
| 91 | + "source": [ |
| 92 | + "### Generate the tree\n", |
| 93 | + "\n", |
| 94 | + "# Parameters\n", |
| 95 | + "max_iter = 10\n", |
| 96 | + "p_branch = 0.55\n", |
| 97 | + "\n", |
| 98 | + "# Start by generating the root \n", |
| 99 | + "tree = { 0 : {'stem' : '_root_',\n", |
| 100 | + " 'branches' : '_none_'} }\n", |
| 101 | + "\n", |
| 102 | + "# Keep track of IDs\n", |
| 103 | + "IDs = [0]\n", |
| 104 | + "\n", |
| 105 | + "# Iterate\n", |
| 106 | + "for iterstep in range(max_iter):\n", |
| 107 | + " \n", |
| 108 | + " # For each existing stem...\n", |
| 109 | + " for ID in tree.keys():\n", |
| 110 | + " \n", |
| 111 | + " # If it can create branches...\n", |
| 112 | + " if tree[ID]['branches'] == '_none_':\n", |
| 113 | + " \n", |
| 114 | + " # Randomly decide if it branches\n", |
| 115 | + " if np.random.binomial(1, p_branch) or tree[ID]['stem'] == '_root_':\n", |
| 116 | + " \n", |
| 117 | + " # Create the new branches\n", |
| 118 | + " make_branches(ID, IDs)\n", |
| 119 | + " \n", |
| 120 | + " # Otherwise, make it a leaf\n", |
| 121 | + " else: \n", |
| 122 | + " tree[ID]['branches'] = ['_leaf_', '_leaf_']\n", |
| 123 | + " \n", |
| 124 | + "# Clean up final leaves (in case max_iter was reached)\n", |
| 125 | + "for ID in tree.keys():\n", |
| 126 | + " if tree[ID]['branches'] == '_none_':\n", |
| 127 | + " tree[ID]['branches'] = ['_leaf_', '_leaf_']" |
| 128 | + ] |
| 129 | + }, |
| 130 | + { |
| 131 | + "cell_type": "markdown", |
| 132 | + "metadata": {}, |
| 133 | + "source": [ |
| 134 | + "### Track Generation: Indices" |
| 135 | + ] |
| 136 | + }, |
| 137 | + { |
| 138 | + "cell_type": "code", |
| 139 | + "execution_count": 5, |
| 140 | + "metadata": { |
| 141 | + "collapsed": false |
| 142 | + }, |
| 143 | + "outputs": [], |
| 144 | + "source": [ |
| 145 | + "### Generate length & indices of all tracks\n", |
| 146 | + "\n", |
| 147 | + "# Parameters\n", |
| 148 | + "min_len = 10\n", |
| 149 | + "max_len = 100\n", |
| 150 | + "\n", |
| 151 | + "# Function to recursively assign lenghts / indices\n", |
| 152 | + "def generate_indices(ID):\n", |
| 153 | + " \n", |
| 154 | + " # Randomly generate length\n", |
| 155 | + " track_len = np.random.randint(min_len, max_len)\n", |
| 156 | + " \n", |
| 157 | + " # Generate indices for the root (count from zero)\n", |
| 158 | + " if tree[ID]['stem'] == '_root_':\n", |
| 159 | + " track_indices = np.arange(0, track_len)\n", |
| 160 | + " \n", |
| 161 | + " # Generate indices for branches/leaves (count from stem position)\n", |
| 162 | + " else:\n", |
| 163 | + " track_indices = np.arange(1, track_len+1) + tree[tree[ID]['stem']]['indices'][-1]\n", |
| 164 | + " \n", |
| 165 | + " # Add indices to tree\n", |
| 166 | + " tree[ID]['indices'] = track_indices\n", |
| 167 | + " \n", |
| 168 | + " # Generate indices for the branches (recursion)\n", |
| 169 | + " if tree[ID]['branches'][0] != '_leaf_':\n", |
| 170 | + " generate_indices(tree[ID]['branches'][0])\n", |
| 171 | + " generate_indices(tree[ID]['branches'][1])\n", |
| 172 | + " \n", |
| 173 | + "# Run the function\n", |
| 174 | + "generate_indices(0)" |
| 175 | + ] |
| 176 | + }, |
| 177 | + { |
| 178 | + "cell_type": "markdown", |
| 179 | + "metadata": {}, |
| 180 | + "source": [ |
| 181 | + "### Track Generation: Measurements" |
| 182 | + ] |
| 183 | + }, |
| 184 | + { |
| 185 | + "cell_type": "code", |
| 186 | + "execution_count": 6, |
| 187 | + "metadata": { |
| 188 | + "collapsed": false |
| 189 | + }, |
| 190 | + "outputs": [], |
| 191 | + "source": [ |
| 192 | + "### Function to generate pink-noise\n", |
| 193 | + "# Adapted from Allen B. Downey,\n", |
| 194 | + "# github.com/AllenDowney/ThinkDSP/blob/master/code/voss.ipynb\n", |
| 195 | + "# I removed the pandas dependency (at the cost of speed and scaling...)\n", |
| 196 | + "\n", |
| 197 | + "def voss(nrows, ncols=16):\n", |
| 198 | + " \"\"\"Generates pink noise using the Voss-McCartney algorithm.\n", |
| 199 | + " \n", |
| 200 | + " nrows: number of values to generate\n", |
| 201 | + " rcols: number of random sources to add\n", |
| 202 | + " \n", |
| 203 | + " returns: NumPy array\n", |
| 204 | + " \"\"\"\n", |
| 205 | + " \n", |
| 206 | + " # Set up the array\n", |
| 207 | + " array = np.empty((nrows, ncols))\n", |
| 208 | + " array.fill(np.nan)\n", |
| 209 | + " \n", |
| 210 | + " # Populate first row (first time point)\n", |
| 211 | + " array[0, :] = np.random.random(ncols)\n", |
| 212 | + " \n", |
| 213 | + " # Populate first columns (highest-freq generator)\n", |
| 214 | + " array[:, 0] = np.random.random(nrows)\n", |
| 215 | + " \n", |
| 216 | + " # Compute where changes happen and add new values\n", |
| 217 | + " n = nrows # the total number of changes is nrows\n", |
| 218 | + " cols = np.random.geometric(0.5, n)\n", |
| 219 | + " cols[cols >= ncols] = 0\n", |
| 220 | + " rows = np.random.randint(nrows, size=n)\n", |
| 221 | + " array[rows, cols] = np.random.random(n)\n", |
| 222 | + " \n", |
| 223 | + " # Forward-fill the skipped nan values\n", |
| 224 | + " lel = np.copy(array)\n", |
| 225 | + " while np.any(np.isnan(array)):\n", |
| 226 | + " nan_r, nan_c = np.where(np.isnan(array))\n", |
| 227 | + " fillable = np.where(~np.isnan(array[nan_r-1, nan_c]))\n", |
| 228 | + " array[nan_r[fillable], nan_c[fillable]] = array[nan_r[fillable]-1, nan_c[fillable]]\n", |
| 229 | + "\n", |
| 230 | + " # Return the sums\n", |
| 231 | + " return array.sum(axis=1)" |
| 232 | + ] |
| 233 | + }, |
| 234 | + { |
| 235 | + "cell_type": "code", |
| 236 | + "execution_count": 7, |
| 237 | + "metadata": { |
| 238 | + "collapsed": false |
| 239 | + }, |
| 240 | + "outputs": [], |
| 241 | + "source": [ |
| 242 | + "### Generate two measurements (at different order of magnitude)\n", |
| 243 | + "\n", |
| 244 | + "# For each branch...\n", |
| 245 | + "for ID in tree.keys():\n", |
| 246 | + " \n", |
| 247 | + " # For each measure & magnitude...\n", |
| 248 | + " for m_name, m_magnitude in zip(['measure_1','measure_2'],[1,10]):\n", |
| 249 | + " \n", |
| 250 | + " # Create measure track\n", |
| 251 | + " tree[ID][m_name] = voss(tree[ID]['indices'].shape[0], ncols=16) * m_magnitude" |
| 252 | + ] |
| 253 | + }, |
| 254 | + { |
| 255 | + "cell_type": "markdown", |
| 256 | + "metadata": {}, |
| 257 | + "source": [ |
| 258 | + "### Saving Generated Data" |
| 259 | + ] |
| 260 | + }, |
| 261 | + { |
| 262 | + "cell_type": "code", |
| 263 | + "execution_count": 8, |
| 264 | + "metadata": { |
| 265 | + "collapsed": false |
| 266 | + }, |
| 267 | + "outputs": [], |
| 268 | + "source": [ |
| 269 | + "### Save the tree structure\n", |
| 270 | + "# Files will be \"ID\\tStem\\tBranch1\\tBranch2\\n\"\n", |
| 271 | + "\n", |
| 272 | + "with open(\"tree_struct.txt\",\"w\") as outfile:\n", |
| 273 | + " \n", |
| 274 | + " # Write header\n", |
| 275 | + " outfile.write(\"trackID\\tstemID\\tbranchID1\\tbranchID2\\n\")\n", |
| 276 | + " \n", |
| 277 | + " # Iterate over branches in random order\n", |
| 278 | + " # (...to better approximate real experimental result lists)\n", |
| 279 | + " shuffled_keys = tree.keys()\n", |
| 280 | + " np.random.shuffle(shuffled_keys)\n", |
| 281 | + " for ID in shuffled_keys:\n", |
| 282 | + " \n", |
| 283 | + " # Write the output\n", |
| 284 | + " outfile.write(\"%s\\t%s\\t%s\\t%s\\n\" % (ID,\n", |
| 285 | + " tree[ID]['stem'],\n", |
| 286 | + " tree[ID]['branches'][0],\n", |
| 287 | + " tree[ID]['branches'][1]))" |
| 288 | + ] |
| 289 | + }, |
| 290 | + { |
| 291 | + "cell_type": "code", |
| 292 | + "execution_count": 9, |
| 293 | + "metadata": { |
| 294 | + "collapsed": false |
| 295 | + }, |
| 296 | + "outputs": [], |
| 297 | + "source": [ |
| 298 | + "### Save data tracks\n", |
| 299 | + "\n", |
| 300 | + "for m_name in ['measure_1','measure_2']:\n", |
| 301 | + " \n", |
| 302 | + " # Create fname\n", |
| 303 | + " fname = \"tracks_\"+m_name+\".txt\"\n", |
| 304 | + " \n", |
| 305 | + " # Create header\n", |
| 306 | + " all_IDs = sorted(tree.keys())\n", |
| 307 | + " header = '\\t'.join([\"index\"]+[str(ID) for ID in all_IDs])\n", |
| 308 | + "\n", |
| 309 | + " # Create a numpy array containing all track data\n", |
| 310 | + " # Note: first column is the time course index\n", |
| 311 | + " final_index = np.max(np.concatenate([tree[ID]['indices'] for ID in all_IDs]))\n", |
| 312 | + " track_array = np.zeros((final_index+1, len(all_IDs)+1))\n", |
| 313 | + " track_array.fill(np.nan)\n", |
| 314 | + " track_array[:, 0] = np.arange(final_index+1)\n", |
| 315 | + " for track_idx,ID in enumerate(all_IDs):\n", |
| 316 | + " track_array[tree[ID]['indices'], track_idx+1] = tree[ID][m_name]\n", |
| 317 | + "\n", |
| 318 | + " # Write the file\n", |
| 319 | + " fmt = ['%d'] + [' %.3f' for track_idx in range(len(all_IDs))] # To write index as d, everything else as f\n", |
| 320 | + " np.savetxt(fname, track_array, fmt=fmt, delimiter='\\t', header=header, comments='') " |
| 321 | + ] |
| 322 | + } |
| 323 | + ], |
| 324 | + "metadata": { |
| 325 | + "kernelspec": { |
| 326 | + "display_name": "Python 2", |
| 327 | + "language": "python", |
| 328 | + "name": "python2" |
| 329 | + }, |
| 330 | + "language_info": { |
| 331 | + "codemirror_mode": { |
| 332 | + "name": "ipython", |
| 333 | + "version": 2 |
| 334 | + }, |
| 335 | + "file_extension": ".py", |
| 336 | + "mimetype": "text/x-python", |
| 337 | + "name": "python", |
| 338 | + "nbconvert_exporter": "python", |
| 339 | + "pygments_lexer": "ipython2", |
| 340 | + "version": "2.7.11" |
| 341 | + } |
| 342 | + }, |
| 343 | + "nbformat": 4, |
| 344 | + "nbformat_minor": 2 |
| 345 | +} |
0 commit comments