-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrollaganda.py
82 lines (66 loc) · 2.21 KB
/
trollaganda.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
"""
Main python script to run the program
"""
from embedding import ReadFile, PreProcess, PrepareEmbedding
from model import TheModel
from predictor import Predictor
import config
def setup(args):
model = None
# embed = None
readfile = ReadFile(path=args.input, split=args.split)
readfile.readfile()
if args.plot:
readfile.distribution_plot()
pre_proc = PreProcess(data=readfile.data, textfield="message")
pre_proc.process_text()
if args.plot:
pre_proc.see_data_head()
# TODO add opional paths for pre-train word sets
embedded_path = "./GoogleNews-vectors-negative300.bin.gz" if args.word2vec else "./glove.txt"
embed = PrepareEmbedding(
X=readfile.data.message,
Y=readfile.data.isTroll,
embedded_path=embedded_path
)
if args.plot:
embed.print_info()
if args.word2vec:
embed.load_word_2_vec()
else:
embed.load_glove()
embed.train(args.max_vocabulary)
embed.release_pre_trained()
if args.train:
model = TheModel()
model.conv_net(
embeddings=embed.train_embedding_weights,
max_sequence_length=args.max_sequence,
num_words=len(embed.train_word_index) + 1,
embedding_dim=args.embedding_dim,
trainable=False
)
model.train_model(
traincnndata=embed.train_cnn_data,
Y_train=embed.Y_train,
epochs=args.epochs,
batch_size=args.batch_size
)
model.evaluate_model(test_cnn_data=embed.test_cnn_data, Y_test=embed.Y_test)
if args.plot:
model.print_accuracy_plot()
model.print_loss_plot()
if args.save_model:
model.save_model(path=args.save_model)
else: # load model
model = TheModel()
path = args.load_model if args.load_model else config.LOAD_MODEL_PATH
model.load_model(path=path)
if args.save_model:
model.save_model(path=args.save_model)
if args.predict:
# TODO split embed from predictor
predictor = Predictor(model=model, embed=embed)
# Example of prediction
predictor.predict(messages=args.predict)
return predictor