|
| 1 | +// Copyright 2017-2018 LEXUGE |
| 2 | +// |
| 3 | +// This program is free software: you can redistribute it and/or modify |
| 4 | +// it under the terms of the GNU General Public License as published by |
| 5 | +// the Free Software Foundation, either version 3 of the License, or |
| 6 | +// (at your option) any later version. |
| 7 | +// |
| 8 | +// This program is distributed in the hope that it will be useful, |
| 9 | +// but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 10 | +// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 11 | +// GNU General Public License for more details. |
| 12 | +// |
| 13 | +// You should have received a copy of the GNU General Public License |
| 14 | +// along with this program. If not, see <http://www.gnu.org/licenses/>. |
| 15 | + |
| 16 | +// Overall: This is the source code of the AlphaForce Balancer. |
| 17 | + |
| 18 | +use handler::{ErrorCases, ResultHandler}; |
| 19 | +use handler::ErrorCases::Unsolvable; |
| 20 | +use handler::WarnCases::{FreeVariablesDetected, NoWarn}; |
| 21 | +use super::frac_util::Frac; |
| 22 | + |
| 23 | +pub struct GaussianElimination { |
| 24 | + matrix_a: Vec<Vec<Frac>>, // A n*n matrix. |
| 25 | + matrix_b: Vec<Frac>, // A n*1 matrix. |
| 26 | + n: usize, |
| 27 | + m: usize, |
| 28 | +} |
| 29 | + |
| 30 | +struct Pivots { |
| 31 | + col: Vec<usize>, |
| 32 | + row: Vec<usize>, |
| 33 | +} |
| 34 | + |
| 35 | +impl GaussianElimination { |
| 36 | + pub fn new(matrix_a: Vec<Vec<Frac>>, matrix_b: Vec<Frac>, n: usize, m: usize) -> Self { |
| 37 | + // Create a GaussianElimination Solution. |
| 38 | + Self { |
| 39 | + matrix_a: matrix_a, |
| 40 | + matrix_b: matrix_b, |
| 41 | + n: n, |
| 42 | + m: m, |
| 43 | + } |
| 44 | + } |
| 45 | + |
| 46 | + pub fn solve(&mut self) -> Result<ResultHandler<Vec<Frac>>, ErrorCases> { |
| 47 | + // The Gaussian-Jordan Algorithm |
| 48 | + for i in 0..self.n { |
| 49 | + let leftmosti = match self.get_leftmost_row(i) { |
| 50 | + Some(s) => s, |
| 51 | + None => continue, |
| 52 | + }; |
| 53 | + self.matrix_a.swap(i, leftmosti); |
| 54 | + self.matrix_b.swap(i, leftmosti); |
| 55 | + let j = match self.get_pivot(i) { |
| 56 | + // if left most has no pivot, just continue. |
| 57 | + Some(s) => s, |
| 58 | + None => continue, |
| 59 | + }; |
| 60 | + let maxi = self.get_max_abs_row(i, j)?; |
| 61 | + if self.matrix_a[maxi][j].numerator != 0 { |
| 62 | + self.matrix_a.swap(i, maxi); |
| 63 | + self.matrix_b.swap(i, maxi); // swap row i and maxi in matrix_a and matrix_b |
| 64 | + { |
| 65 | + let tmp = self.matrix_a[i][j]; |
| 66 | + self.divide_row(i, tmp)?; |
| 67 | + } |
| 68 | + for u in i + 1..self.n { |
| 69 | + let v = self.mul_row(i, self.matrix_a[u][j])?; // v has n+1 elements |
| 70 | + for (k, item) in v.iter().enumerate().take(self.m) { |
| 71 | + self.matrix_a[u][k] = self.matrix_a[u][k].sub(*item)?; // A_{u}=A_{u}-A_{u}{j}*A_{i} |
| 72 | + } |
| 73 | + self.matrix_b[u] = self.matrix_b[u].sub(v[self.m])?; |
| 74 | + } |
| 75 | + } |
| 76 | + } // REF |
| 77 | + |
| 78 | + for i in (0..self.n).rev() { |
| 79 | + let j = match self.get_pivot(i) { |
| 80 | + Some(s) => s, |
| 81 | + None => continue, |
| 82 | + }; |
| 83 | + for u in (0..i).rev() { |
| 84 | + // j above i |
| 85 | + let v = self.mul_row(i, self.matrix_a[u][j])?; // v has n+1 elements |
| 86 | + for (k, item) in v.iter().enumerate().take(self.m) { |
| 87 | + self.matrix_a[u][k] = self.matrix_a[u][k].sub(*item)?; // A_{u}=A_{u}-A_{u}{j}*A_{i} |
| 88 | + } |
| 89 | + self.matrix_b[u] = self.matrix_b[u].sub(v[self.m])?; |
| 90 | + } |
| 91 | + } // RREF |
| 92 | + let mut ans: Vec<Frac> = vec![Frac::new(0, 1); self.m]; |
| 93 | + let pivots = self.check()?; |
| 94 | + let mut free_variable = false; |
| 95 | + for i in (0..self.m).rev() { |
| 96 | + if pivots.col.contains(&i) { |
| 97 | + let mut sum = Frac::new(0, 1); |
| 98 | + for (k, item) in ans.iter().enumerate().take(self.m).skip(i + 1) { |
| 99 | + sum = sum.add(self.matrix_a[pivots.row[i]][k].mul(*item)?)?; |
| 100 | + } |
| 101 | + ans[i] = self.matrix_b[pivots.row[i]] |
| 102 | + .sub(sum)? |
| 103 | + .div(self.matrix_a[pivots.row[i]][i])?; |
| 104 | + } else { |
| 105 | + free_variable = true; |
| 106 | + ans[i] = Frac::new(1, 1); // set all free variables = 1/1. |
| 107 | + } |
| 108 | + } |
| 109 | + Ok(ResultHandler { |
| 110 | + warn_message: if free_variable { |
| 111 | + FreeVariablesDetected |
| 112 | + } else { |
| 113 | + NoWarn |
| 114 | + }, |
| 115 | + result: ans, |
| 116 | + }) // x_{n} to x_{1} |
| 117 | + } |
| 118 | + |
| 119 | + fn check(&self) -> Result<Pivots, ErrorCases> { |
| 120 | + let mut col: Vec<usize> = Vec::new(); |
| 121 | + let mut row: Vec<usize> = Vec::new(); |
| 122 | + for i in 0..self.n { |
| 123 | + if self.get_pivot(i).is_some() { |
| 124 | + col.push(self.get_pivot(i).unwrap()); |
| 125 | + row.push(i); |
| 126 | + } |
| 127 | + if self.matrix_a[i] == vec![Frac::new(0, 1); self.n + 1] |
| 128 | + && self.matrix_b[i] != Frac::new(0, 1) |
| 129 | + { |
| 130 | + return Err(Unsolvable); |
| 131 | + } |
| 132 | + } |
| 133 | + Ok(Pivots { col, row }) |
| 134 | + } |
| 135 | + |
| 136 | + fn get_pivot(&self, row: usize) -> Option<usize> { |
| 137 | + for column in 0..self.m { |
| 138 | + if self.matrix_a[row][column] != Frac::new(0, 1) { |
| 139 | + return Some(column); |
| 140 | + } |
| 141 | + } |
| 142 | + None |
| 143 | + } |
| 144 | + |
| 145 | + fn get_leftmost_row(&self, row: usize) -> Option<usize> { |
| 146 | + let mut fake_zero = false; |
| 147 | + let mut leftmost = row; |
| 148 | + let mut min_left: usize = match self.get_pivot(row) { |
| 149 | + Some(s) => s, |
| 150 | + None => { |
| 151 | + fake_zero = true; |
| 152 | + 0 |
| 153 | + } |
| 154 | + }; |
| 155 | + for i in row + 1..self.n { |
| 156 | + let current_pivot = match self.get_pivot(i) { |
| 157 | + Some(s) => s, |
| 158 | + None => continue, |
| 159 | + }; |
| 160 | + if (current_pivot < min_left) | (fake_zero) { |
| 161 | + leftmost = i; |
| 162 | + min_left = current_pivot; |
| 163 | + fake_zero = false; |
| 164 | + } |
| 165 | + } |
| 166 | + Some(leftmost) |
| 167 | + } |
| 168 | + |
| 169 | + fn mul_row(&self, row: usize, multiplicator: Frac) -> Result<Vec<Frac>, ErrorCases> { |
| 170 | + let mut v: Vec<Frac> = Vec::new(); |
| 171 | + for column in 0..self.m { |
| 172 | + v.push(self.matrix_a[row][column].mul(multiplicator)?); |
| 173 | + } |
| 174 | + v.push(self.matrix_b[row].mul(multiplicator)?); |
| 175 | + Ok(v) |
| 176 | + } |
| 177 | + |
| 178 | + fn divide_row(&mut self, row: usize, divisor: Frac) -> Result<bool, ErrorCases> { |
| 179 | + for column in 0..self.m { |
| 180 | + self.matrix_a[row][column] = self.matrix_a[row][column].div(divisor)?; |
| 181 | + } |
| 182 | + self.matrix_b[row] = self.matrix_b[row].div(divisor)?; |
| 183 | + Ok(true) |
| 184 | + } |
| 185 | + |
| 186 | + fn get_max_abs_row(&self, row: usize, column: usize) -> Result<usize, ErrorCases> { |
| 187 | + let mut maxi = row; |
| 188 | + for k in row + 1..self.n { |
| 189 | + if self.matrix_a[k][column].abs()? > self.matrix_a[maxi][column].abs()? { |
| 190 | + maxi = k; |
| 191 | + } |
| 192 | + } |
| 193 | + Ok(maxi) |
| 194 | + } |
| 195 | +} |
0 commit comments