-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathdemo.py
85 lines (61 loc) · 2.3 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
import os
import accelerate
from langchain import LLMChain, PromptTemplate
from langchain.llms import HuggingFacePipeline
from transformers import pipeline
from wizardlm_langchain.helpers import (
AttributeDict,
convert_to_bytes,
get_available_memory,
)
from wizardlm_langchain.model import load_quantized_model
GPTQ_MODEL_DIR = os.getenv("MODEL_DIR", "./models/")
MODEL_NAME = os.getenv("MODEL_NAME", "wizardLM-7B-GPTQ")
CPU_MEM_BUFFER = os.getenv("CPU_MEM_BUFFER", "3GiB")
def create_gptq_llm_chain(cpu_mem_buffer):
args = {
"wbits": 4,
"groupsize": 128,
"model_type": "llama",
"model_dir": GPTQ_MODEL_DIR,
}
model, tokenizer = load_quantized_model(MODEL_NAME, args=AttributeDict(args))
cpu_mem, gpu_mem_map = get_available_memory(cpu_mem_buffer)
print(f"Detected Memory: System={cpu_mem}, GPU(s)={gpu_mem_map}")
max_memory = {**gpu_mem_map, "cpu": cpu_mem}
device_map = accelerate.infer_auto_device_map(
model, max_memory=max_memory, no_split_module_classes=["LlamaDecoderLayer"]
)
model = accelerate.dispatch_model(
model, device_map=device_map, offload_buffers=True
)
print(f"Memory footprint of model: {model.get_memory_footprint() / (1024 * 1024)}")
template = """Question: {question}
Answer: Let's think step by step."""
llm_pipeline = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
max_length=512,
device_map=device_map,
)
local_llm = HuggingFacePipeline(pipeline=llm_pipeline)
prompt = PromptTemplate(template=template, input_variables=["question"])
llm_chain = LLMChain(prompt=prompt, llm=local_llm)
return llm_chain
def ask_ai_interactive(llm_chain):
chat_history = []
print(
"\n\nWelcome to the GPTQ Chat Interface! Type 'exit' to stop when you're done."
)
while True:
query = input("\nType your question here: ")
if query.lower() == "exit":
break
result = llm_chain({"question": query, "chat_history": chat_history})
chat_history.append((query, result["text"]))
print("Answer:", result["text"])
if __name__ == "__main__":
mem_buf = convert_to_bytes(CPU_MEM_BUFFER)
llm_chain = create_gptq_llm_chain(mem_buf)
ask_ai_interactive(llm_chain)