-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy patheval_stage2.py
295 lines (230 loc) · 9.9 KB
/
eval_stage2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
""" Collection of methods to compute the score.
1. We start with a true and predicted mask, corresponding to one train image.
2. The true mask is segmented into different objects. Here lies a main source
of error. Overlapping or touching nuclei are not separated but are labeled as
one object. This means that the target mask can contain less objects than
those that have been originally identified by humans.
3. In the same manner the predicted mask is segmented into different objects.
4. We compute all intersections between the objects of the true and predicted
masks. Starting with the largest intersection area we assign true objects to
predicted ones, until there are no true/pred objects left that overlap.
We then compute for each true/pred object pair their corresponding intersection
over union (iou) ratio.
5. Given some threshold t we count the object pairs that have an iou > t, which
yields the number of true positives: tp(t). True objects that have no partner are
counted as false positives: fp(t). Likewise, predicted objects without a counterpart
a counted as false negatives: fn(t).
6. Now, we compute the precision tp(t)/(tp(t)+fp(t)+fn(t)) for t=0.5,0.55,0.60,...,0.95
and take the mean value as the final precision (score).
"""
import os
import argparse
import sys
import datetime
import csv
from six.moves import xrange
from skimage.transform import resize
from skimage.morphology import label
# from scipy.ndimage.measurements import label
import pandas as pd
import numpy as np
import tensorflow as tf
from nets.unet import Unet_32_512, Unet_64_1024
from utils.oper_utils2 import read_test_data_properties, mask_to_rle, \
trsf_proba_to_binary, rle_to_mask
from input_pred_data import Data
from input_pred_data import DataLoader
from PIL import Image
import scipy.ndimage as ndi
FLAGS = None
def get_image_size(imageId):
image_path = os.path.join(FLAGS.data_dir, imageId, 'images')
image = os.listdir(image_path)
img = Image.open(os.path.join(image_path, image[0]))
return img.height, img.width
def morpho_op(BW):
s = [[0,1,0],[1,1,1],[0,1,0]]#structuring element (diamond shaped)
m_morfo = ndi.binary_opening(BW,structure=s,iterations=1)
m_morfo = ndi.binary_closing(m_morfo,structure=s,iterations=1)
M_filled = ndi.binary_fill_holes(m_morfo,structure=s)
return M_filled
def main(_):
# specify GPU
if FLAGS.gpu_index:
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = FLAGS.gpu_index
tf.logging.set_verbosity(tf.logging.INFO)
# TensorFlow session: grow memory when needed. TF, DO NOT USE ALL MY GPU MEMORY!!!
gpu_options = tf.GPUOptions(allow_growth=True)
config = tf.ConfigProto(log_device_placement=False, gpu_options=gpu_options)
sess = tf.InteractiveSession(config=config)
X = tf.placeholder(tf.float32, shape=[None, FLAGS.img_size, FLAGS.img_size, 3], name="X")
mode = tf.placeholder(tf.bool, name="mode") # training or not
if FLAGS.use_64_channel:
pred = Unet_64_1024(X, mode, FLAGS)
else:
pred = Unet_32_512(X, mode, FLAGS)
# evaluation = tf.argmax(logits, 1)
sess.run(tf.global_variables_initializer())
##################################################
# Restore variables from training checkpoints.
##################################################
saver = tf.train.Saver()
checkpoint_path = None
if FLAGS.checkpoint_dir and FLAGS.checkpoint_file:
checkpoint_path = FLAGS.checkpoint_dir+'/'+FLAGS.checkpoint_file
else:
ckpt = tf.train.get_checkpoint_state(FLAGS.checkpoint_dir)
if ckpt and ckpt.model_checkpoint_path:
checkpoint_path = ckpt.model_checkpoint_path
if checkpoint_path:
saver.restore(sess, checkpoint_path)
global_step = checkpoint_path.split('/')[-1].split('-')[-1]
print('Successfully loaded model from %s at step=%s.' % (
checkpoint_path, global_step))
else:
print('No checkpoint file found at %s' % FLAGS.checkpoint_dir)
return
############################
# Get data
############################
raw = Data(FLAGS.data_dir)
test_data = DataLoader(raw.get_data(), FLAGS.img_size, FLAGS.batch_size)
iterator = tf.data.Iterator.from_structure(test_data.dataset.output_types,
test_data.dataset.output_shapes)
next_batch = iterator.get_next()
# Ops for initializing the two different iterators
test_init_op = iterator.make_initializer(test_data.dataset)
test_batches_per_epoch = int(test_data.data_size / FLAGS.batch_size)
if test_data.data_size % FLAGS.batch_size > 0:
test_batches_per_epoch += 1
##################################################
# prepare
##################################################
# Create result_dir
if not os.path.exists(FLAGS.result_dir):
os.makedirs(FLAGS.result_dir)
# Delete existed submission file
filename = os.path.join(FLAGS.result_dir, 'submission-nucleus_stage2-' + global_step + '.csv')
if os.path.exists(filename):
os.remove(filename)
##################################################
# start test & make csv file.
##################################################
start_time = datetime.datetime.now()
print("start test: {}".format(start_time))
total_process_count = test_data.data_size
process_count = 0
# Initialize iterator with the test dataset
sess.run(test_init_op)
for i in range(test_batches_per_epoch):
batch_xs, fnames = sess.run(next_batch)
prediction = sess.run(pred,
feed_dict={
X: batch_xs,
mode: False}
)
# Transform propabilities into binary values 0 or 1.
test_pred = trsf_proba_to_binary(prediction)
for i in range(len(test_pred)):
imageId = fnames[i].decode()
height, width = get_image_size(imageId)
# Resize predicted masks to original image size.
res_mask = trsf_proba_to_binary(
resize(np.squeeze(test_pred[i]), (height, width), mode='constant', preserve_range=True)
)
#
# fill the holes that remained
res_mask_f = morpho_op(res_mask)
# Rescale to 0-255 and convert to uint8
res_mask_f = (255.0 * res_mask_f).astype(np.uint8)
res_mask |= res_mask_f
#
test_pred_to_original_size = np.array(res_mask)
# Run length encoding of predicted test masks.
test_pred_rle = []
test_pred_ids = []
# calculate the minimum object size
min_object_size = 20 * height * width / (FLAGS.img_size * FLAGS.img_size)
# rle
rle = list(mask_to_rle(test_pred_to_original_size))
if(len(rle) == 0):
print('Number of predicted masks is ', len(rle))
test_pred_rle.extend([[1, 1]])
test_pred_ids.extend([imageId] * 1)
else:
test_pred_rle.extend(rle)
test_pred_ids.extend([imageId] * len(rle))
sub = pd.DataFrame()
sub['ImageId'] = test_pred_ids
sub['EncodedPixels'] = pd.Series(test_pred_rle).apply(lambda x: ' '.join(str(y) for y in x))
if not os.path.isfile(filename):
sub.to_csv(filename, index=False)
else:
sub.to_csv(filename, index=False, header=False, mode='a')
process_count += 1
print('evaluation... %d / %d' % (process_count, total_process_count))
# add bulk data for invalid image
sub = pd.DataFrame()
sub['ImageId'] = ['5390acefd575cf9b33413ddf6cbb9ce137ae07dc04616ba24c7b5fe476c827d2']
sub['EncodedPixels'] = pd.Series([[1, 1]]).apply(lambda x: ' '.join(str(y) for y in x))
sub.to_csv(filename, index=False, header=False, mode='a')
end_time = datetime.datetime.now()
print('end test: {}'.format(test_data.data_size, end_time))
print('test waste time: {}'.format(end_time - start_time))
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument(
'--data_dir',
# default='/home/ace19/dl-data/nucleus_detection/stage1_train',
# default='../../dl_data/nucleus/stage1_test',
default='../../dl_data/nucleus/stage2_test_final',
type=str,
help="Data directory")
parser.add_argument(
'--batch_size',
default=4,
type=int,
help="Batch size")
parser.add_argument(
'--checkpoint_dir',
type=str,
default=os.getcwd() + '/models',
help='Directory to read checkpoint.')
parser.add_argument(
'--checkpoint_file',
type=str,
# default='unet.ckpt-20',
default=None,
help='checkpoint file name.')
parser.add_argument(
'--result_dir',
type=str,
default=os.getcwd() + '/result',
help='Directory to write submission.csv file.')
parser.add_argument(
'--img_size',
type=int,
default=512,
# default=256,
help="Image height and width")
parser.add_argument(
'--gpu_index',
type=str,
# default='0',
default=None,
help="Set the gpu index. If you not sepcify then auto")
parser.add_argument(
'--use_64_channel',
type=bool,
default=True,
# default=False,
help="If you set True then use the Unet_64_1024. otherwise use the Unet_32_512")
parser.add_argument(
'--conv_padding',
type=str,
default='same',
# default='valid',
help="conv padding. if your img_size is 572 and, conv_padding is valid then the label_size is 388")
FLAGS, unparsed = parser.parse_known_args()
tf.app.run(main=main, argv=[sys.argv[0]] + unparsed)