-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbigram.py
150 lines (125 loc) · 4.97 KB
/
bigram.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
import torch
import torch.nn as nn
from torch.nn import functional as F
# hyperparameters
batch_size = 32 # how many independent sequences will we process in parallel?
block_size = 8 # what is the maximum context length for predictions?
max_iters = 3000
eval_interval = 300
learning_rate = 1e-2
device = 'cuda' if torch.cuda.is_available() else 'cpu'
eval_iters = 200
# ------------
torch.manual_seed(1337)
# %%
# download the tiny shakespeare dataset
#!wget https://raw.githubusercontent.com/karpathy/char-rnn/master/data/tinyshakespeare/input.txt
# %%
# read in the dataset
with open('input.txt', 'r', encoding='utf-8') as f:
text = f.read()
# %%
# get all unique characters in text
chars = sorted(list(set(text)))
vocab_size = len(chars)
# %%
# map characters to integers (tokenizer)
stoi = {ch:i for i,ch in enumerate(chars)}
itos = {i:ch for i,ch in enumerate(chars)}
encode = lambda s: [stoi[c] for c in s] # input: string, output: list of ints
decode = lambda l: ''.join([itos[i] for i in l]) # input: list of ints,
# output: string
# %%
# encode the entire dataset and store in a PyTorch tensor
data = torch.tensor(encode(text), dtype=torch.long)
# %%
# train-validation split
n = int(0.9*(len(data))) # first 90% of data will be training data
train_data = data[:n]
val_data = data[n:]
def get_batch(split):
# generate a batch of data of inputs x and targets y
data = train_data if split == 'train' else val_data
ix = torch.randint(len(data) - block_size, (batch_size,))
x = torch.stack([data[i:i+block_size] for i in ix])
y = torch.stack([data[i+1:i+block_size+1] for i in ix])
return x,y
@torch.no_grad()
def estimate_loss():
out = {}
model.eval()
for split in ['train', 'val']:
losses = torch.zeros(eval_iters)
for k in range(eval_iters):
X, Y = get_batch(split)
logits, loss = model(X, Y)
losses[k] = loss.item()
out[split] = losses.mean()
model.train()
return out
# %%
class BigramLanguageModel(nn.Module):
# predictions for next token are made based only on current token
def __init__(self, vocab_size):
super().__init__()
# each token directly reads logits for next token from lookup table.
# each token has a unique row of size vocab_size to read logits from.
self.token_embedding_table = nn.Embedding(vocab_size, vocab_size)
def forward(self, idx, targets=None):
# idx and targets are both int tensors of shape (Batch, Time).
# for each token in each context window
# (Time -> num. of tokens in context window)
# in each chunk (Batch -> number of chunks in batch),
# pull out the corresponding logits (Channel -> vocab_size/feature size)
# from the lookup table
logits = self.token_embedding_table(idx) # (Batch, Time, Channel)
# measure quality of logits based on target (how well are we predicting
# next character)
if targets is None:
loss = None
else:
# reshape logits for pytorch: (Batch, Channel, Time)
B, T, C = logits.shape
logits = logits.view(B*T, C)
targets = targets.view(B*T)
loss = F.cross_entropy(logits, targets)
# logits represent probability that a character is the correct next-word
return logits, loss
def generate(self, idx, max_new_tokens):
# idx is (B, T) array of indices in current context window.
# we are generating B next-word predictions and appending each
# prediction to the appropriate context window in the batch B
for _ in range(max_new_tokens):
# get predictions
logits, loss = self(idx)
# focus only on last time step
logits = logits[:, -1, :] # becomes (B, C)
# apply softmax to get probabilities
probs = F.softmax(logits, dim=-1) # (B, C)
# sample from distribution
idx_next = torch.multinomial(probs, num_samples=1) # (B, 1)
# append sampled index to running sequence
idx = torch.cat((idx, idx_next), dim=1) # (B, T+1)
return idx
model = BigramLanguageModel(vocab_size)
m = model.to(device)
# %%
# create PyTorch optimizer
optimizer = torch.optim.AdamW(model.parameters(), lr=1e-3)
# %%
# train the Bigram model
for iter in range(max_iters):
# every once in a while evaluate the loss on train and val sets
if iter % eval_interval == 0:
losses = estimate_loss()
print(f"step {iter}: train loss {losses['train']:.4f}, val loss {losses['val']:.4f}")
# sample a batch of data
xb, yb = get_batch('train')
# evaluate the loss
logits, loss = model(xb, yb)
optimizer.zero_grad(set_to_none=True)
loss.backward()
optimizer.step()
# generate from the model
context = torch.zeros((1, 1), dtype=torch.long, device=device)
print(decode(m.generate(context, max_new_tokens=500)[0].tolist()))